ESTIMATING BEDLOAD SEDIMENT DELIVERY TO THE GREAT LAKES FROM SIXTY MICHIGAN RIVERS

by

JOHN H. BARKACH

DISSERTATION

Submitted to the Graduate School

Of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2021

MAJOR: CIVIL ENGINEERING

Approved By:

Advisor

Date

© COPYRIGHT BY

JOHN H. BARKACH

2021

All Rights Reserved

DEDICATION

This dissertation is dedicated to my amazing wife Cynthia, and to my wonderful children Timothy, Catherine, and Anna for supporting and motivating me, as well as my parents Mary Ann and John William Barkach who instilled in me the value of hard work and academic achievement. This research required long hours and many weekends to complete, and through it all, Cynthia, Timothy, Catherine and Anna provided tremendous support and patience to help me complete this academic journey. Thank you!

ACKNOWLEDGMENTS

I would like to express my gratitude and thanks to my advisor Dr. Carol Miller for supporting this research, and providing guidance and encouragement to complete this work. Dr. Miller's knowledge of open channel hydraulics and reservoir sedimentation were instrumental in this research. In addition, I would like to acknowledge Dr. James Selegean, U.S. Army Corps of Engineers for his guidance, knowledge of sediment transport, and facilitating access to the extensive dredging data and other resources at the USACE Detroit District. Emily Bradley, USACE completed the Geographic Information System analysis of the 60 Michigan watersheds and five sub-watersheds that are summarized in the Appendices. Dr. James Syvitski, University of Colorado was especially helpful in providing data and answering questions regarding estimation of watershed sediment delivery using the BQART equation and other methods. Dr. Mark Baskaran, WSU was instrumental in the re-evaluation of the ¹³⁷Cs and ²¹⁰Pb radiometric data to select the sediment cores that were used to estimate sediment deposition rates within the associated reservoirs of the five sub-watersheds. Luke Trumble, EGLE Dam Safety Unit answered questions and provided an updated inventory of dams located in Michigan. In addition, I acknowledge the extensive support provided by Susan Greiner, PE, Michigan Department of Environment, Great Lakes, and Energy, and Dr. Marlio Lesmez, PE, EGLE of Hydrologic Studies and Dam Safety Unit who completed the mean annual river flow and exceedance flow calculations for all 60 watersheds and five sub-watersheds, and the contributing watershed areas for 45 of the 60 watersheds.

iii

TABLE OF CONTENTS

DEDICATIONii
ACKNOWLEDGMENTSiii
LIST OF TABLES
LIST OF FIGURESxi
CHAPTER 1 INTRODUCTION 1
1.1 Watershed Sediment Delivery to the River Outlet 1
1.2 Hypothesis
CHAPTER 2 LITERATURE REVIEW
2.1 Overview of Sediment Transport, Dissolved Load, Wash Load, and Bed Material Load
2.2 Bankfull River Flow12
2.3 Watershed Sediment Delivery Equations13
2.4 USACE Watershed Models to Estimate Sediment Delivery
2.5 Estimates of Watershed Sediment Delivery Using the USACE 2010 Great Lakes Regional Trend Line16
2.6 Estimates of Watershed Sediment Delivery Using the Syvitski and Milliman (2007) BQART Equation17
2.7 Comparison of the Watershed Sediment Delivery Estimates Using the USACE (2010) Great Lakes Regional Trendline and the Syvitski and Milliman (2007) BQART Equation
2.8 Bedload Sediment Delivery Equations
CHAPTER 3 METHODS
3.1 Watershed Area35
3.2 Mean Annual River Flow and Recurrence Interval Flows at the River Outlet36

	3.3 Watershed Relief	43
	3.4 River Slope	46
	3.5 Watershed Curve Number	47
	3.6 Mean Basin Precipitation and Temperature	53
	3.7 Radiometric Dating of Sediment Cores, Five Reservoirs.	54
	3.8 USACE-Detroit District Maintenance Dredging of Federal Navigation Channe and Harbors	
	3.8.1 USACE-Detroit District Dredging Forecasts and the Potential Impact of the Implementation of the USDA Conservation Reserve Program (CRP) and Sediment Best Management Practices During the Early 1990's	
	3.8.2 Conversion of the Average Annual Volume Dredged to Metric Tonnes	83
	3.9 Assessment of Fluvial Depositional Areas, Upland and Aquatic Wetlands, Natural Lakes and Manmade Reservoirs	87
	3.10 Sediment Deposition and Reservoir Trapping Efficiency, Assessment of Reservoirs Trapping Efficiency Using the Brune GM (1953) Capacity/Inflow Methodology	93
	3.10.1 Estimated Settling Velocities of Sediment Using Stoke's Law and Ferguson and Church (2004) for Sand, Silt, and Clay-sized Particles	101
	3.10.2 Estimated Reservoir Trapping Efficiency Using the Brune (1953) Capacity/Inflow Ratio Methodology	105
CH	APTER 4 RESULTS AND DISCUSSION	112
	4.1 Assessment of Watershed Variables in Conjunction with the Prediction of Me Annual River Flow and Selected Recurrence Interval Flows	
	4.1.1 Relationship Between River Slope and Watershed Area	119
	4.1.2 Watershed Curve Number	121
	4.1.3 Regression Analysis, Mean Annual River Flow and Recurrence Interval Flows v. Fourteen Watershed Characteristics	124

4.2. Regression Set 1, Analysis of Watershed Variables in Conjunction with Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Non- Transformed Dependent and Independent Variables, 12 Watersheds
4.3. Regression Set 2, Analysis of Watershed Variables in Conjunction with the Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Non- Transformed Dependent and Independent Variables, 17 Watersheds
4.4 Regression Set 3, Analysis of Watershed Variables in Conjunction with Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Natural Log Transformed Dependent and Independent Variables, 17 Watersheds
CHAPTER 5 CONCLUSIONS163
CHAPTER 6 AREAS OF FURTHER RESERACH168
REFERENCES
ABSTRACT558
AUTOBIOGRAPHICAL STATEMENT

LIST OF TABLES

Table 1.	Summary of Laboratory Test Conditions, Three Bedload Sediment Transport Equations
Table 2.	Characteristics of 12 Michigan Rivers Located Within the Lake Superior Watershed
Table 3.	Characteristics of 26 Michigan Rivers Located Within the Lake Michigan Watershed
Table 4.	Characteristics of 14 Michigan Rivers Located Within the Lake Huron Watershed
Table 5.	Characteristics of Eight Michigan Rivers Located Within the Lake Erie Watershed
Table 6.	Sub-Watersheds, Mio Dam (2A), Brown Bridge Dam (9A), Webber Dam (14A), Ford Dam (15A), and Riley Dam (34A)41
Table 7.	Area Weighted Maximum Relief, Eight Watersheds45
Table 8.	Watershed Curve Numbers, Annual Runoff and Slopes of 12 Michigan Rivers Located in the Lake Superior Watershed
Table 9.	Watershed Curve Numbers, Annual Runoff and Slopes of 26 Michigan Rivers Located in the Lake Michigan Watershed50
Table 10	. Watershed Curve Numbers, Annual Runoff and Slopes of 14 Michigan Rivers Located in the Lake Huron Watershed51
Table 11	. Watershed Curve Numbers, Annual Runoff, and Slopes of Eight Rivers Located Within the Lake Erie Watershed
Table 12	2. Watershed Curve Numbers, Annual Runoff, and Slopes for Five Sub- Watersheds of the Au Sable River (2), Boardman River (9), Grand River (14A), Huron River (15), and S. Joseph River (34A)
Table 13	 Comparison of Reservoir Sedimentation Rates of Five Sub-Watersheds Using ¹³⁷Cs and ²¹⁰Pb Radiometric Dating64
Table 14	. Summary of USACE Navigation Channel Dredging, 30 Michigan Harbors73

Table 15.	USACE Littoral Sediment Adjustment and Basis to Exclude or Retain a Harbor from Further Analysis
Table 16.	Estimate of Specific Weight of Fluvial Sediment
Table 17.	Comparison of Estimates of Annual Fluvial Sediment Delivery: Since 1st Recorded Dredging Event and Post-CRP, and Adjusted to Removal Fluvial Sediment
Table 18.	Summary of Dam Type and Use, 60 Michigan Watersheds
Table 19.	Equations Developed by Verstraeten G and Poesen J (2000) and USDA-SCS (1983) That Describe the Brune (1953) Reservoir Trapping Efficiencies Curves
Table 20.	Example Sediment Settling Velocities Calculated Using Stokes Law (at 70F)
Table 21.	Settling Velocities Calculated Using Ferguson and Church (2004) Methodology
Table 22.	Summary of Estimated Reservoir Trapping Efficiencies for the Mio Dam (2A), Boardman Dam (9A), Webber Dam (14A), Ford Dam (15A), and Riley Dam (34A)
Table 23.	Watershed Area, Curve Number, River Slope, Maximum and Average Relief, Mean Basin Temperature and Precipitation, Watersheds 1-30
Table 24.	Watershed Area, Curve Number, River Slope, Maximum and Average Relief, Mean Basin Temperature and Precipitation, Watersheds 31-60
Table 25.	Mean Annual River Flow and Recurrence Interval Flows, Watersheds 1-30
Table 26.	Mean Annual River Flow and Recurrence Interval Flows, Watersheds 31-60
Table 27.	Watershed Land Use, 2011 NLCD and EGLE (1978) MIRIS Land Use, Watersheds 1-30
Table 28.	Watershed Land Use, 2011 NLCD and EGLE (1978) Land Use, Watersheds 30-60 118
Table 29.	Example Regression, 2-year Recurrence Interval Flow v. All Variables 127

Table 30.	Example Regression, Mean Annual River Flow v. Watershed Area, Watershed CN, Maximum Relief, and River Slope
Table 31.	Summary of Regression Equation Intercept and Coefficients, Mean Annual River Flow and Recurrence Interval Flows
Table 32.	Correlation Matrix, 15 Independent Variables, Regression Set 1, 12 Watersheds
Table 33.	Regressions 1-1 to 1-9, Watershed Sediment Delivery Based on USACE Dredging Data, 12 Watersheds, Non-Transformed
Table 34.	Regressions 1-10 to 1-18, Watershed Sediment Delivery Based on USACE Dredging Data, 12 Watersheds, Non-Transformed
Table 35.	Regressions 1-19 to 1-26, Watershed Sediment Delivery Based on USACE Dredging Data, 12 Watersheds, Non-Transformed
Table 36.	Regressions 2-1 to 2-10, 17 Watershed Sediment Delivery Estimates, Non- Transformed
Table 37.	Regressions 2-11 to 2-19, 17 Watershed Sediment Delivery Estimates, Non- Transformed
Table 38.	Natural Log Transformation of Dependent and Independent Variables 146
Table 39.	Regressions 3-1 to 3-12, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation
Table 40.	Regressions 3-13 to 3-23, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation
Table 41.	Regressions 3-24 to 3-33, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation
Table 42.	Regressions 3-34 to 3-36, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation150
Table 43.	Regressions 3-37 to 3-42, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation151
Table 44.	Regression 3-36 Summary Statistics
Table 45.	Predicted Sediment Delivery Using Regression 3-36 in Comparison to Estimated Sediment Delivery Using USACE Dredging Data and Radiometric Dating

Table 46.	Comparison of Regression 3-36 Predicted Bedload Sediment Delivery and Watershed Sediment Delivery Predicted Using the USACE (2010) Trendline and the BQART Equation, Watersheds 1-30
Table 47.	Comparison of Regression 3-36 Predicted Bedload Delivery and Watershed Sediment Delivery Predicted Using the USACE (2010) Trend line and the BQART Equation, Watersheds 31-63
Table 48.	RESSED Reservoirs Located in Michigan Watersheds

LIST OF FIGURES

Figure 1.	Examples of Deposition and Erosion Within a Fluvial System, Two Hearted River (61) (Google Earth Pro, 2021)
Figure 2.	Aerial Photograph of the Outlet of the Grand River (14) at Lake Michigan Following a Large Storm Event, April 22nd, 2013 (Beaver M, 2013)
Figure 3.	Sediment Dredging Backlog Under Constrained Dredging Funding 2013-2018 (USACE, 2014)
Figure 4.	Location of 60 Michigan Watersheds and Associated USACE Harbors6
Figure 5.	Diagram of Channel Cross-Section (USGS, 2016)7
Figure 6.	Bed Shear Stress (Figure 2.1, USACE, 1993)9
Figure 7.	Example of Bankfull Stage, Upper Rouge River13
Figure 8.	Annual Watershed Sediment Delivery to River Outlet, USACE (2010) Great Lakes Regional Trend Line (Barkach JH, 2020)
Figure 9.	Comparison of Watershed Sediment Delivery Estimates to the Great Lakes: the Global BQART Equation and the USACE (2010) Great Lakes Regional Trend Line
Figure 10	. Photograph of the Vibracore Sampling Equipment Used to Collect 4-inch Sediment Cores for Radiometric Dating (GLEC, 2011)55
Figure 11	. Radiometric Data, Sediment Core RD6, Riley Dam, St. Joseph River58
Figure 12	. Mio Dam (2A) Estimated Sediment Accumulation Rate, Au Sable River 59
Figure 13	. Brown Bridge Dam (9A) Estimated Sediment Accumulation Rate, Boardman River60
Figure 14	. Webber Dam (14A) Estimated Sediment Accumulation Rate, Grand River. 61
Figure 15	. Ford Dam (15A) Estimated Sediment Accumulation Rate, Huron River 62
Figure 16	. Riley Dam (34A) Estimated Sediment Accumulation Rate, St. Joseph River 63
Figure 17	Fluvial Sediment Accumulation, St. Joseph River (34) Navigation Channel:

Figure 17. Fluvial Sediment Accumulation, St. Joseph River (34) Navigation Channel; USACE (2019a) Bathymetric Survey; Google Earth Pro (2021)67

Figure 18.	Example of Littoral Sediment Accumulation at the Entrance of Holland Harbor (Outer Harbor), Macatawa River (8), USACE (2019b) Bathymetric Survey (Condition Assessment)
Figure 19.	Littoral Sediment Transport, Holland Harbor, Macatawa River (8) (Google Earth Pro, 2021)70
Figure 20.	USDA (2021) Conservation Reserve Program Enrollment, State of Michigan, 1986-2019
Figure 21.	USACE Monroe Harbor, River Raisin (29), 4-Year Rolling Average of Annual Dredged Volume
Figure 22.	USACE Rouge River Navigation Channel (31), 4-Year Rolling Average of Annual Dredged Volume
Figure 23.	USACE Saginaw River Navigation Channel (32), 4-Year Rolling Average of Annual Dredged Volume
Figure 24.	Distribution of Specific Weight, 752 Pre-Dredge Sediment Samples
Figure 25.	Examples of Dams Not Included in the Percentage of Watershed Covered in Reservoirs
Figure 26.	Distribution of Dam Height, 1,378 Dams Located in 60 Michigan Watersheds
Figure 27.	Distribution of Reservoir Pool Surface Areas, 1,378 Dams Located in 60 Michigan Watersheds91
Figure 28.	Photograph of the Cedar River Dam Spillway, Extensive Reservoir Deposition is Apparent on the East Side of the Cedar River Dam Reservoir, (MI00516), Built in 1890, Elk River Watershed (13) (Aerial Photograph, Google Earth Pro, 2021)
Figure 29.	Brown Reservoir Trapping Efficiency Curve (from Brown 1943)
Figure 30.	Churchill's Curve (from Churchill MA, 1948)99
Figure 31.	Reservoir Trapping Efficiency Curves, Capacity Inflow Ratio (from Brune GM, 1953)
Figure 32.	Summary of Reservoir Capacity/Inflow Ratios, 802 Reservoirs Located in 60 Michigan Watersheds

Figure 33. Estimated Reservoir Trapping Efficiencies for Sand and Gravel Particle Sizes, Brune (1953) Capacity/Inflow Methodology
Figure 34. Estimated Reservoir Trapping Efficiencies for Silt and Sand Sized Particles, Brune (1953) Capacity/Inflow Methodology
Figure 35. Estimated Reservoir Trapping Efficiencies for Clay and Silt Sized Particles, Brune (1953) Capacity/Inflow Methodology
Figure 36. Distribution of Percent Fines (Silt and Clay Sized Particles), 738 USACE Pre- Dredge Sediment Quality Samples
Figure 37, Distribution of Sediment Particle Size, D50, 252 USACE Pre-Dredge Sediment Quality Samples111
Figure 38. Relationship Between River Slope and Watershed Area
Figure 39. Relationship Between Watershed Curve Number and Watershed Area 123
Figure 40. Relationship Between Mean Annual River Flow and Watershed Area (Barkach JH et al, 2020)125
Figure 41. Predicted v. Actual Mean Annual River Flow, Predicted Flow is a Function of Watershed Area (A), Curve Number (CN), and Maximum Relief (R) 130
Figure 42. Predicted v. Actual 2-Year Recurrence Interval Flow, Predicted Flow is a Function of Watershed Area (A) and Curve Number (CN)
Figure 43. Predicted v. Actual 10-Year Recurrence Interval Flow, Predicted Flow is a Function of Watershed Area (A) and Curve Number (CN)
Figure 44. Loud Dam, MI00178, Au Sable River (2) (Google Earth Pro, 2021)
Figure 45. Aerial Photographs, Grand River (14), St. Joseph River (34), Menominee River (50)
Figure 46. Percentage of Bedload Sediment Delivery in Comparison to Total Watershed Sediment Delivery
Figure 47. RESSED Reservoirs Located in Southeast Michigan (Google Earth Pro, 2021)

LIST OF APPENDICES

APPENDIX A. MICHIGAN WATERSHED NUMBER REFERENCE MAP	. 174
APPENDIX B. AU GRES RIVER WATERSHED (1)	. 175
APPENDIX C. AU SABLE RIVER WATERSHED (2)	. 180
APPENDIX D. AU SABLE RIVER WATERSHED, MIO DAM (2A)	. 185
APPENDIX E. AU SABLE RIVER WATERSHED, ALCONA DAM (2B)	. 191
APPENDIX F. BELLE RIVER WATERSHED (3)	. 195
APPENDIX G. BETSIE RIVER WATERSHED (4)	200
APPENDIX H. BIG SABLE WATERSHED (5)	205
APPENDIX I. BLACK RIVER WATERSHED, EAST (6)	.210
APPENDIX J. BLACK RIVER WATERSHED, WEST (7)	.215
APPENDIX K. MACATAWA RIVER WATERSHED (8)	. 220
APPENDIX L. BOARDMAN RIVER WATERSHED (9)	.225
APPENDIX M. BOARDMAN RIVER WATERSHED, BROWN BRIDGE POND (9A).	.230
APPENDIX N. PINE RIVER WATERSHED (10)	235
APPENDIX O. CHEBOYGAN RIVER WATERSHED (11)	.240
APPENDIX P. CLINTON RIVER WATERSHED (12)	.245
APPENDIX Q. ELK RIVER WATERSHED (13)	.250
APPENDIX R. GRAND RIVER WATERSHED (14)	255
APPENDIX S. GRAND RIVER WATERSHED, WEBBER DAM (14A)	.261
APPENDIX T. HURON RIVER WATERSHED (15)	.267
APPENDIX U. HURON RIVER WATERSHED, FORD LAKE (15A)	.272
APPENDIX V. KALAMAZOO RIVER WATERSHED (17)	.278

APPENDIX W. KAWKAWLIN RIVER WATERSHED (18)
APPENDIX X. LINCOLN RIVER WATERSHED (19)
APPENDIX Y. MANISTEE RIVER WATERSHED (20)
APPENDIX Z. MUSKEGON RIVER WATERSHED (22)
APPENDIX AA. OCQUEOC RIVER WATERSHED (23)
APPENDIX BB. PENTWATER RIVER WATERSHED (24)
APPENDIX CC. PERE MARQUETTE RIVER WATERSHED (25)
APPENDIX DD. PIGEON RIVER WATERSHED (26)
APPENDIX EE. PINE RIVER WATERSHED (27)
APPENDIX FF. PLATTE RIVER WATERSHED (28)
APPENDIX GG. RAISIN RIVER WATERSHED (29)
APPENDIX HH. RIFLE RIVER WATERSHED (30)
APPENDIX II. ROUGE RIVER WATERSHED (31)
APPENDIX JJ. SAGINAW RIVER WATERSHED (32)
APPENDIX KK. SEBEWAING RIVER WATERSHED (33)
APPENDIX LL. ST. JOSEPH RIVER WATERSHED (34)
APPENDIX MM. ST. JOSEPH RIVER WATERSHED, RILEY DAM (34A)
APPENDIX NN. ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM (34B). 376
APPENDIX OO. STONY CREEK RIVER WATERSHED (35)
APPENDIX PP. THUNDER BAY RIVER WATERSHED (36)
APPENDIX QQ. WHITE RIVER WATERSHED (37)
APPENDIX RR. WILLOW CREEK WATERSHED (38)
APPENDIX SS. AU TRAIN WATERSHED (39)

CHAPTER 1 INTRODUCTION

1.1 Watershed Sediment Delivery to the River Outlet

Watershed sediment delivery is the total amount of sediment generated within a watershed and delivered to the river outlet over a particular timeframe. Estimation of watershed sediment delivery involves an understanding of the complex processes of soil erosion, sediment transport, and sediment deposition (Borah et al, 2008; Creech C et al, 2010; Garcia, 2008; Gray and Simoes, 2008; MacArthur et al, 2008; Milliman and Farnsworth, 2011; Sommerlot et al, 2013; Alighalehbabakhani et al, 2017a; and, USACE, 1995 and 2008).

Soil erosion at the watershed scale involves transport of sediment entrained in overland surface water flow to the river system as well as erosion of the bed and banks of the river (formation of gullies, river bank failure, and mass wasting). As water and sediment move from higher elevations to a lower elevations, energy is released and a river dissipates this energy by performing work on the channel (erosion and deposition; see Figure 1) and by movement of sediment entrained in water (Bagnold RA, 1977; Morisawa 1968; Brooks et al., 2013; UNESCO, 2013). The transport of sediment by water forms the bed and banks of the river, and changes the slope of the river through aggradation (raising of the river bed) and degradation (deepening of the river bed). Sediment depositional areas (e.g. sinks) within the watershed include sediment deposited onto floodplains and in the bed and banks of the river, upland and aquatic wetlands, as well as sediment deposited in natural lakes and manmade reservoirs that trap sediment

1

before it reaches the river outlet (Biedenharn et al., 2008; Cohen et al., 2014; FISRWG, 1998: Foster et al., 1981; Gray and Simoes, 2008; USACE, 2008).

Figure 1. Examples of Deposition and Erosion Within a Fluvial System, Two Hearted River (61) (Google Earth Pro, 2021)

Estimation of watershed sediment delivery integrates the effects of river flow, topography, surficial geology, and land use. Excessive sedimentation has significant economic impacts and is a leading stressor of biological communities that inhabit these waterways (Charlton R, 2008; MacArthur et al, 2008; Smith et al., 2015). The effects of excessive sedimentation include habitat degradation and corresponding changes to the biological communities and spawning habitats (Yang CT, 2006; MDEQ, 2008). An example of sediment discharge from Grand River (14) to Lake Michigan following a large storm event is shown in Figure 2.

Figure 2. Aerial Photograph of the Outlet of the Grand River (14) at Lake Michigan Following a Large Storm Event, April 22nd, 2013 (Beaver M, 2013)

With respect to economic impact, damage to infrastructure due to excessive erosion and sedimentation is well documented (MacArthur et al, 2008; USACE, 1995; USACE, 2015). Excessive erosion along river banks and downcutting of the river bed can damage roads, sewers, bridges, buildings, and other infrastructure. Aside from the effects on biological communities, excessive sedimentation can significantly reduce reservoir capacity and affect the water quality of rivers and impoundments (USACE, 1995; Yang CT, 2006; Alighalehbabakhani et al., 2017b). Another economic impact of watershed sediment delivery includes the physical loss of top soil due to erosion which can adversely affect soil fertility and lead to an increase in fertilizer use (and increased agricultural expense), potentially degrading the water quality of nearby streams and rivers (Montgomery DR, 2012; Ritter J, 2015; Trimble and Lund, 1982). From 1986 to 2013, USACE Great Lakes maintenance dredging of federal navigation channels averaged approximately 2.4 million cubic meters of sediment each year; however, sediment is accumulating in the navigational channels and harbors faster than the sediment is removed resulting in a growing dredging backlog (USACE, 2014; see Figure 3). The estimated Fiscal Year 2021 navigational dredging costs in the Great Lakes are \$48,620,000 for maintenance dredging of 2,821,000 cubic meters (3,690,000 cubic yards) of sediment (USACE, 2021). In addition, the Fiscal Year 2021 USACE Great Lakes appropriation includes \$9,930,000 to perform condition assessments (bathymetric surveys) to determine the amount of sediment that has accumulated in the navigation channel and harbor that requires maintenance dredging backlog for these 30 USACE-Detroit District maintained harbors and navigational channels totals 2,514,341 cubic meters (3,288,634 cubic yards) of sediment.

The USACE-Detroit District maintains 94 harbors and navigation channels within the Great Lakes watershed. Of the 60 Michigan rivers included in this research, 30 of these rivers discharge to USACE-Detroit District maintained harbors or navigation channels (see Figure 4). Estimation of bedload sediment delivery to the river outlet of these 60 Michigan watersheds and five sub-watersheds is the subject of this research.

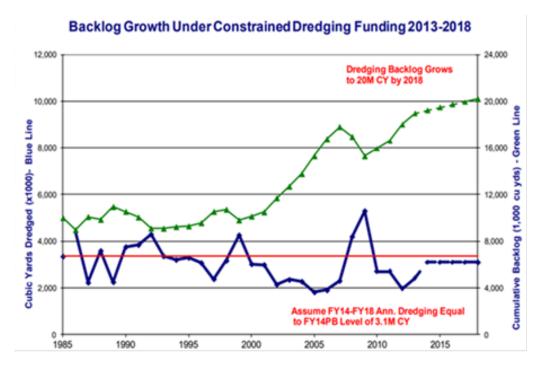
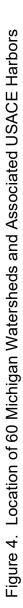



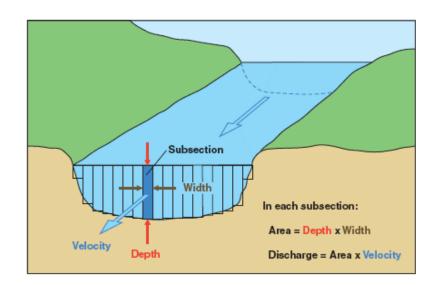
Figure 3. Sediment Dredging Backlog Under Constrained Dredging Funding 2013-2018 (USACE, 2014)

1.2 Hypothesis

If an empirical equation can be developed as a statistical model to describe the relationship between bedload watershed sediment delivery to the river outlet and significant watershed characteristics, then bedload watershed sediment delivery can be reliably predicted as a function of the characteristics of the watershed. Characteristics of the watershed include: watershed area; the mean annual flow and/or recurrence interval flows of the river draining the watershed at the river outlet; characteristics of the watershed such as land use as expressed by the watershed Runoff Curve Number and the average and maximum elevation of the watershed covered in depositional areas such as natural surface water bodies, aquatic and upland wetlands, and manmade dams and associated reservoirs located within the watershed.

A STATE AND A STAT
A DESCRIPTION OF A DESC
4
61
60 62 St. Mary's River
2 × 1 × 1
13 Lake Huron
8 6 1 2
And have
S C S C S C S C S C S C S C S C S C S C
37 7 32
a all the second second
12 12
P. T. Clair River
The second secon
L LYN S Lake St. Clair
•
Scholt River
4
A CONTRACTOR OF A CONTRACTOR O
A STATE OF
A CONTRACTOR OF A CONTRACTOR O
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE

Google Earth Image: Data SIO/NOAA/US Navy; NOAA 2018, Image Landsat/Copernicus. Notes:
 - USACE Maintained Harbor or Navigation Channel; NA – not applicable.


2.1 Overview of Sediment Transport, Dissolved Load, Wash Load, and Bed Material Load

The field of sediment transport might just as well be called "transport of granular particles by fluids," and embodies a type of two-phase flow, in which one phase is fluid (river water) and the other phase is a solid, e.g. sediment (Garcia MH, 2008). The rivers that drain each watershed transport sediment. River discharge (Q; cubic meters/second) is calculated using the Continuity Equation as follows:

$$Q = U \times A \tag{1}$$

where,

U = water velocity (meter/second)

A = cross-sectional area of the river perpendicular to flow (square meter)

Figure 5. Diagram of Channel Cross-Section (USGS, 2016)

As shown in Figure 5, total river discharge (Q) is calculated by measuring current velocity (U) in each channel subsection and integrating over the subsection areas (Area, A) to obtain total discharge (Q). In steady, turbulent, uniform, open-channel flow, a river is characterized using the following measurements (Garcia MH, 2008; USDA, 2007): mean flow depth (H; meters), mean flow velocity (U; meters/second), river width (B; meters), water surface slope (S; meter/meter), and a river bottom surface roughness that has an effective height of k_s (meter). For very wide river channels (B/H >> 1), the hydraulic radius of the river (R_h ; cross-sectional area/wetted perimeter) approximates the mean flow depth (H).

The river channel is covered with sediment having a mean size or diameter (D; meter) and the roughness height (k_s) will be proportional to this diameter. Due to the weight of the water and the slope of the channel, the river flow exerts on the river bottom a tangential force per unit bed area known as the bed shear stress (T_b), which in the case of steady, uniform flow can be expressed as:

Bed Shear Stress,
$$T_b = (\Upsilon)(R_h)(S)$$
 (2)
where,

 Υ = specific weight of water (998 kilograms/cubic meters) R_h = hydraulic radius (meter) S = slope of energy grade line or water surface (meter/meter) Υ = specific weight of water = (ρ)(g)

 ρ = water density

g = acceleration due to gravity

Bed shear stress has units of force (kilograms/square meter) and is used to evaluate sediment movement (incipient motion) and the particle size of the sediment that can be moved by a river at a certain stage (water depth). When breaking this force into components, the component in the downstream direction is the force that moves sediment (bed shear stress); the deeper the water (e.g. the larger the hydraulic radius, R), the greater the bed shear stress (see Figure 6).

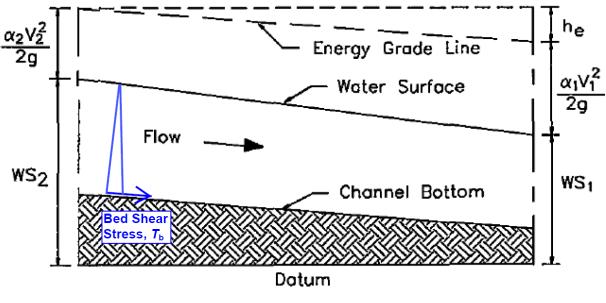


Figure 6. Bed Shear Stress (Figure 2.1, USACE, 1993)

In the case of steady, uniform flow, shear stress (T) varies with depth of water above the river bottom (z), and is given as follows:

$$T = T_{b} (1 - z/H)$$
(3)

As shown in Figure 6, shear stress (T) is greatest near the river bottom and decreases toward the surface of the river. The depth-wise variation in shear stress and shear velocity help explain the vertical distribution of suspended sediment in open channel flow. Bed shear stress is used to determine if sediment of a certain particle size can be set in motion by a river with a given slope and depth (USDA, 2007; McCuen, 2004; Garcia MH, 2008). Shear velocity (V_s) helps lift sediment particles as the water velocity increases as the water accelerates over the top of the particle.

$$V_S = \sqrt{gR_hS} \tag{4}$$

g = acceleration due to gravity (9.81 meters/second squared)

 R_h = hydraulic radius (meter)

S = slope of energy grade line/water surface (meter/meter)

Shear velocity (V_s) provides a direct measure of the flow intensity, and a river's ability to entrain and transport sediment particles (USDA, 2007; Garcia MH, 2008). The size of the sediment particles on the river bottom determines the surface roughness (k_s), which in turn affects the flow velocity distribution and sediment transport rate. Shear velocity creates turbulence on the downstream side of the sediment particle; depending on sediment particle size and shape, this mechanism can cause sediment particles to roll, slide, saltate (bed load), or become suspended in the water column (suspended load).

The total sediment load transported by a river to the river outlet consists of dissolved load, wash load, and bed material load (USACE, 1995; Garcia MH, 2008, Gray JR and Simoes JM, 2008; USDA, 2007):

<u>Dissolved Load</u>: Material dissolved in a river may constitute a large portion of the total load, but it is of no geomorphic significance but may be biologically significant.

<u>Wash Load</u>: Material not found in the river bed in any appreciable significance; diameter d_5 (5% of the bed material is finer) and usually consists of clays and fine silts. Wash load can remain suspended for long periods of time even at very low flow rates. Wash load is kept in suspension by Brownian motion.

<u>Bed Material Load</u>: Bed material load is all of the material found in appreciable quantities in the bed and banks of a river (d_5 to d_{100}). Bed material load consists of bed load and suspended load and is the only material of geomorphic significance. Bed material load is typically assumed to be approximately 10% bed load and 90% suspended load, however these percentages can vary widely (USGS, 2011).

<u>Suspended Load</u>: The portion of the bed material load that is lifted by turbulence to travel within the water column at elevations above the bed greater than a few sediment grain diameters.

<u>Bed Load</u>: The portion of the bed material load that travels within a few grain diameters of the bed and moving slower than the flow of the river. Bed load moves by rolling, sliding, and saltating along the bed of the river. Typically, bedload represents 5–20 percent of the total load carried by a river (USGS, 2011).

In a truly alluvial river, the bed and banks of the river consist of bed material load. However, in the Great Lakes watershed, alluvial rivers are nearly non-existent because they are geologically very young. The most recent glacial event, the Wisconsin glaciation, ended between 11,000 to 14,000 years ago (Flint RF, 1971). There has not been enough time for the rivers of the Great Lakes watersheds to meander back and forth, to create truly alluvial rivers where the bed and banks consist of bed material load. Many sediment transport equations assume that the river is alluvial (Garcia MH, 2008; Mehta AJ and McAnally WH, 2008; Parker G, 2008; USDA, 2007).

2.2 Bankfull River Flow

Bankfull stage is a very important concept in the assessment of watershed sediment transport. Bankfull stage is the elevation where the river spills into the flood plain and is a relief valve for the river (USACE, 1995; USDA, 2007). At bankfull stage, the bed shear force is greatest, and the river performs the most work (e.g. moves the most sediment; see Figure 7). If the river cannot spread out onto the flood plain to release energy, the river may incise (downcut erosion) and de-stabilize banks (bank failure or mass wasting). The frequency of bankfull within a river system varies, but the recurrence interval typically ranges from 1.5 to 2.0 years (Biedenharn et al, 2008).

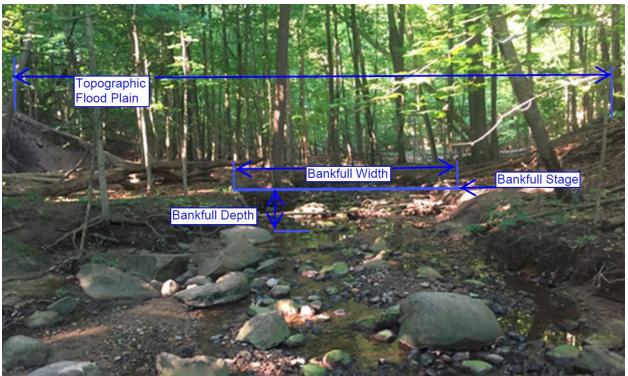


Figure 7. Example of Bankfull Stage, Upper Rouge River

2.3 Watershed Sediment Delivery Equations

Initial research was conducted to compare empirical watershed sediment delivery estimates using two fundamentally different approaches (Barkach JH et al, 2020): the 2010 Great Lakes regional trend line that was developed by the USACE (USACE, 2010a; Creech et al, 2010) and the global BQART sediment delivery equation that was developed Syvitski and Milliman (2007; see Section 2.6). Note that Sections 2.3 to 2.7 discuss the application and comparison of the Syvitski and Milliman Global BQART equation to the USACE (2010a) Great Lakes regional trend line for 60 Michigan Rivers as presented in Barkach JH et al (2020). Insights regarding the river and basin characteristics that primarily affect watershed sediment delivery to the river outlet were developed by

comparing the watershed sediment delivery estimates using the global BQART equation and USACE (2010) Great Lakes regional trend line (Barkach JH et al, 2020).

The USACE (2010) Great Lakes regional trend line is based on 61 watershed sediment delivery estimates that are located within Great Lakes basin and served as the basis of comparison with respect to the global BQART watershed sediment delivery estimates. In addition, for six of these 60 watersheds, the global BQART equation and the USACE Great Lakes regional trend line were compared to watershed sediment delivery estimates that were prepared by the USACE using complex, calibrated hydrodynamic and sediment delivery models.

Watershed sediment delivery equations have often been developed for application at much larger watershed scales than those represented by these 60 Michigan watersheds (Syvitski, 2002; Syvitski and Milliman, 2007; Cohen et al., 2011; and, Cohen et al., 2014). For example, the Syvitski and Milliman (2007) BQART equation was developed from a database of 488 global rivers whose watersheds cover 63% of the earth's surface. The global BQART equation was validated for rivers that have mean annual flows greater than 30 cubic meters/second (Cohen et al, 2011; Syvitski JPM, 2019). The average annual flow rate of the Michigan rivers included in this research is 22 cubic meters/second, and range in size from 1.0 cubic meters/second (Days River; 44) to 132.5 cubic meters/second (St. Joseph River; 34).

2.4 USACE Watershed Models to Estimate Sediment Delivery

Calibrated hydrologic and watershed sediment delivery models were developed by the USACE under the Great Lakes Tributary Model (GLTM) program that was established through Section 516(e) of the Water Resources Development Act of 1996. These comprehensive USACE 516(e) studies were completed on six of the 60 Michigan watersheds included in this research. These watershed sediment delivery estimates were prepared in conjunction with the Great Lakes Tributary Modeling Program (516(e); USACE, 2008) and include:

- Saginaw River watershed (USACE, 1999 and 2000)
- Clinton River watershed (USACE, 2005)
- St. Joseph River watershed (USACE, 2007a)
- Grand River watershed (USACE, 2007b)
- Sebewaing River watershed (USACE, 2007c)
- Ontonagon River watershed (USACE, 2010a)

Watershed models were used by the USACE to simulate short-term (individual storm events) and long-term (historical) changes in a watershed by estimating upland soil and stream erosion, hydrologic conditions, and transport and deposition of sediment. These models are comprehensive and data intensive tools some of which can also be used simulate chemical mixing in water; these models are also called nonpoint source pollution models because they simulate surface water pollutants, including sediment, nutrients, pesticides, and other chemicals, originating from nonpoint or diffused sources (Borah DK et al, 2008; USACE, 2008).

The watershed models that have been used by the USACE and others to predict sediment delivery are complex and require extensive data regarding the hydrologic conditions of the watershed, as well as detailed data regarding soil erosion, sediment transport, and sediment deposition processes. As with all models, the reliability and accuracy of the input data directly affect the reliability and accuracy of the watershed sediment delivery (output) estimated using models. For this reason, model calibration of the hydrologic conditions was completed by the USACE for each of these six watersheds (USACE, 2008; Riedel et al., 2010).

2.5 Estimates of Watershed Sediment Delivery Using the USACE 2010 Great Lakes Regional Trend Line

The USACE 2010 Great Lakes regional trend line (USACE, 2010; Creech et al, 2010) is based on sediment delivery estimates from 61 watersheds located throughout the Great Lakes basin, these include 13 USACE 516(e) models and 48 Great Lakes reservoirs from the Subcommittee on Sedimentation Reservoir Sedimentation (RESSED) database (USGS, 2014). Using these data, the USACE (2010) developed an area-based watershed sediment delivery regression equation for the Great Lakes watershed where:

$$Q_s = 177.6A^{0.77}$$
 (5)

where,

A = Watershed Area (square kilometers)

The USACE (2010) Great Lakes regional trend line is an empirical equation, and as such, is most applicable to estimating watershed sediment delivery within the Great Lakes basin (see Figure 8). Note that Equation 5 is presented as a function of watershed area (square kilometers) and watershed sediment delivery (metric tonnes/year).

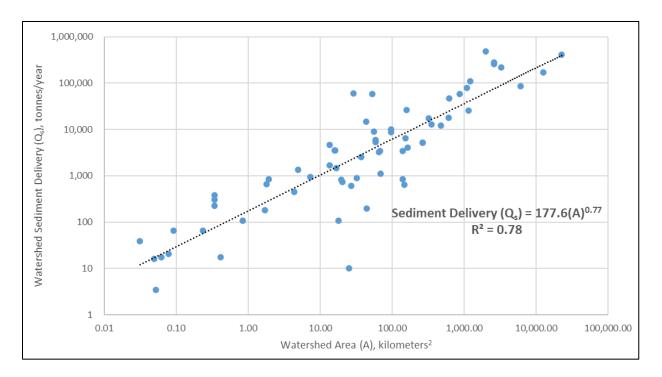


Figure 8. Annual Watershed Sediment Delivery to River Outlet, USACE (2010) Great Lakes Regional Trend Line (Barkach JH, 2020)

With respect to the USACE (2010) Great Lakes regional trend line, the high correlation between watershed area and watershed sediment delivery ($R^2=0.78$) appears to be reflected in the high correlation ($R^2=0.95$) between watershed area and mean annual river flow for the 60 watersheds included in this research (Barkach JH et al, 2020).

2.6 Estimates of Watershed Sediment Delivery Using the Syvitski and Milliman (2007) BQART Equation

Given the extensive data and computational requirements of calibrated hydrodynamic and watershed sediment delivery models (USACE, 2010; Riedel et al., 2010), a number of empirical models have been developed based on observations of watershed sediment delivery and watershed characteristics (Schumm and Hadley, 1961:

Wilson, 1973; Milliman 1980, Milliman and Meade, 1983; Milliman and Syvitski, 1992; Mulder and Syvitski, 1996).

Milliman and Syvitski (1992) demonstrated a strong correlation (R² ranging from 0.70 to 0.82) between watershed sediment delivery (Q_s; millions of metric tonnes of sediment/year; MT/yr) and basin area (A; square kilometers) using a global database of 275 rivers. Mulder and Syvitski (1996) observed that when watersheds with significant human impacts were removed, the correlation coefficient improved. Further, Mulder and Syvitski (1996) noted the importance of surficial geology on watershed sediment delivery where watersheds comprised of softer sedimentary rocks and unconsolidated soils demonstrated much larger sediment delivery than those underlain by metamorphic and igneous rocks. The importance of surficial geology on watershed sediment delivery at the river outlet has been studied by many authors (Striffler, 1963; Bent, 1970; Bent, 1971, Thomas and Beson, 1975; USGS, 1984a; Pinet and Souriau, 1988; Probst and Suchet, 1992; Hicks et al., 1996; Ludwig and Probst, 1998; Inman and Jenkins, 1999; Kapsimalis et al. 2005).

One of Milliman and Syvitski's (1992) contributions was evaluating rivers regardless of size based on relief classes (Syvitski and Milliman, 2007). Relief (R) represents the maximum watershed elevation minus the elevation of the receiving water. Mulder and Syvitski's (1996) multi-regression analysis established a relationship between watershed sediment delivery, watershed area, and maximum watershed relief. Syvitski and Milliman (2007) developed the BQART equation using a database of 488 global rivers whose watersheds encompass 63% of the earth's land surface. The BQART equation

estimates annual suspended sediment load that will discharge to a receiving water body at mean annual river flow. Syvitski and Milliman (2007) developed two equations, one equation for watersheds where the annual mean basin temperature is greater than 2 degrees Centigrade (C) and a second equation for watersheds with an annual mean basin temperature <2°C. The 60 rivers and five sub-watersheds evaluated in this research have mean basin temperatures >2°C, the Syvitski and Milliman (2007) BQART equation for watersheds with annual mean basin temperatures >2°C follows:

$$Q_s = wBQ^{0.31}A^{0.5}RT$$
 (6)

where,

 Q_s = watershed sediment delivery, millions of metric tonnes (MT) per year w = 0.0006 for units of million metric tonnes/year (MT/yr)

B = geologic and human influence factor, calculated value

- Q = mean annual river flow, cubic kilometers/year
- A = watershed area, square kilometers
- R = relief, kilometers
- T = mean basin temperature, °C

The variable B of the BQART equation accounts for characteristics of the watershed and human influence. Characteristics of the watershed include the glacial erosion factor (I), an average basin-wide lithology factor (L), and the sediment trapping efficiency (T_e) of lakes and man-made reservoirs (Syvitski and Milliman, 2007). The human-influenced soil erosion factor (E_h) addresses anthropogenic factors that affect sediment delivery to rivers draining watersheds such as agricultural practices,

urbanization, and deforestation among others (Syvitski and Milliman, 2007). The variable B is calculated as follows (Syvitski and Milliman, 2007):

$$B = IL (1-T_e)E_h$$
(7)

where:

L = basin-wide lithology factor (see Figure 5 of Syvitski and Milliman, 2007) T_e = sediment trapping efficiency of dams and lakes within the watershed E_h = human influence soil erosion factor (see Figure 7 of Syvitski and Milliman, 2007)

I = glacial erosion factor, where

 $I = (1 + 0.09 A_g),$

 A_g = area of the drainage watershed with ice cover as a percentage of the total drainage area of the watershed

Syvitski and Milliman (2007) found that watershed sediment delivery to the world's oceans was most affected by geological parameters (65%: watershed area, maximum relief, surficial geology, and ice cover), climatic factors (14%: precipitation and temperature), and anthropogenic factors (16%: reservoir sedimentation and population density).

The basin-wide lithology factor (L) addresses surficial geology and the impact on watershed sediment delivery. Watersheds composed of soft rock and unconsolidated sediments deliver more sediment to rivers then watersheds underlain by igneous and metamorphic rocks. Syvitski and Milliman (2007) utilized six basin-wide lithology classes ranging from basins composed of hard igneous or high-grade metamorphic rocks (L=0.5)

to basins underlain by exceptionally erodible materials such as loess (L=3). A basin-wide lithology factor L=2 is reserved for basins draining a significant proportion of sedimentary rocks, unconsolidated sedimentary cover, and alluvial deposits (Syvitski and Milliman, 2007). The 60 watersheds addressed in this research are underlain by unconsolidated glacial deposits including glacial outwash plains, glacial till, ice contact and lacustrine deposits; for this reason, a basin-wide lithology factor L=2 was utilized (Barkach JH, 2020).

Natural lakes and manmade reservoirs trap sediment before the sediment can reach the river outlet. The effect of an individual dam on watershed sediment yield is a function of the amount of water entering the lake or reservoir, the hydraulic capacity of the lake or reservoir and the resulting hydraulic retention time, the geometry of the surface water body, and the size of the suspended sediment and bedload among other factors (USACE, 1995; Morris et al, 2008; Alighalehbabakhani et al, 2017a). With respect to Michigan, the 60 watersheds included in this research contain 2,345 dams located within these 60 watersheds. In the Great Lakes region, the small dams are often located in the edges of the watershed where relief is greatest (near glacial moraines and outwash deposits) in contrast to the large dams that are typically located in series along the main stems of the larger rivers. Vorosmarty et al. (2003) developed equations to predict basinwide sediment trapping efficiency, however the effect of multiple manmade reservoirs and natural lakes on watershed sediment delivery is difficult to predict. Due to the inherent challenge of calculating a basin specific trapping efficiency (T_e), the average (1-T_e) value in Syvitski and Milliman's (2007) global database of 488 rivers (0.8) was used for this research (Barkach JH et al, 2020).

The human influenced soil erosion factor (E_h) addresses anthropogenic factors such as urbanization, deforestation, agricultural practices, and mining activities which can increase watershed sediment delivery to a river outlet (Syvitski and Milliman, 2007). According to Syvitski and Milliman (2007), an E_h of 0.3 is used for high-density populations of greater than 200 people/square kiolometer and a per capita income of >15,000/year. An E_h of 1 is used for basins with a low human footprint (population <50/square kilometer). An E_h of 2.0 was used for watersheds with population density (PD) >200/square kilometer but per capita income is low <\$1,000/year. With respect to Michigan, all 83 counties have a per capita income greater than >\$15,000/year based on the 2010 United States Census Data. Population densities were calculated for each of the 60 watersheds and the human influenced soil erosion factor was varied by population density using the Syvitski and Milliman (2007) values described previously. With respect to the 60 watersheds, the human influence soil erosion factor (E_h) was set to 1 for all watersheds with exception of watersheds with high population densities (>200/square kilometer) where E_h was set to 0.3 including the Macatawa River (PD 256/ square kilometer), the Rouge River (PD 1,087/square kilometer), the Clinton River (PD 696/ square kilometer), and the Huron River (PD 260/square kilometer).

With respect to the BQART equation, the glacial erosion factor (I) ranges from 1 (0% ice cover) to 10 (100% ice cover). Since there are no glaciers in Michigan, the glacial erosion factor was set to I=1 representing 0% ice cover (Syvitski and Milliman, 2007).

2.7 Comparison of the Watershed Sediment Delivery Estimates Using the USACE (2010) Great Lakes Regional Trendline and the Syvitski and Milliman (2007) BQART Equation

Of the 60 rivers evaluated, the global BQART equation predicts on average 19% less sediment delivery to the river outlet in comparison to the USACE (2010) Great Lakes regional trend line (Barkach JH et al, 2020). In Figure 9, watershed sediment delivery estimates using the global BQART equation are compared graphically to the USACE (2010) Great Lakes regional trend line. Both a regression line and a 1:1 line is shown in Figure 9. The equation of the regression line is:

$$y = 1.1909x - 8855.8$$
 $R^2 = 0.87$ (8)

where,

y = watershed sediment delivery, global BQART equation, metric tonnes/year

x = watershed sediment delivery, USACE Great Lakes regional trend line, metric tonnes/year

. The slope of the regression equation of 1.1909 is reflected in the average difference (-19%) between the global BQART equation and the USACE (2010) Great Lakes regional trend line and is also apparent in comparison to the 1:1 line that is shown in Figure 9. The noted R² value of 0.87 of the regression line demonstrates the strong correlation between these two methods of estimating watershed sediment delivery to the river outlet. Overall, the global BQART sediment delivery estimates are within 25% of the

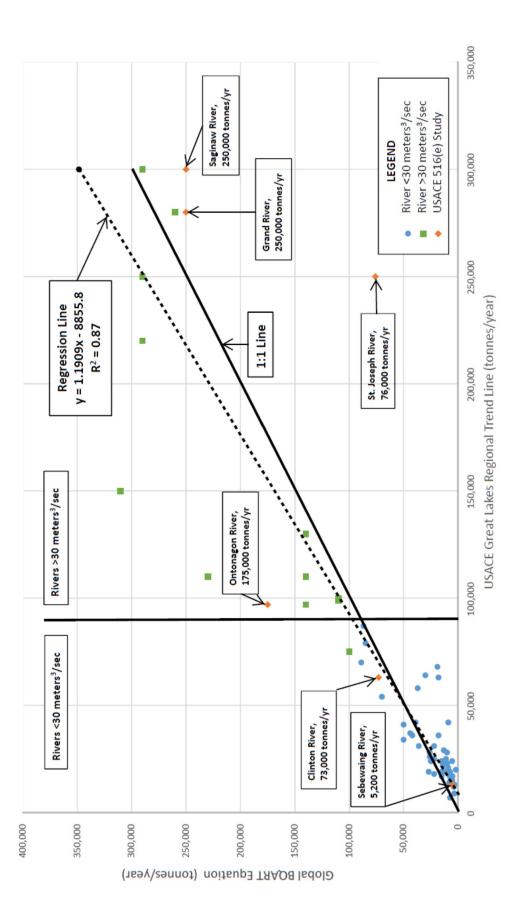


Figure 9. Comparison of Watershed Sediment Delivery Estimates to the Great Lakes: the Global BQART Equation and the USACE (2010) Great Lakes Regional Trend Line

USACE (2010) Great Lakes regional trend line estimates for 21 out of the 60 Michigan rivers (35%). Of these 21 rivers, 15 of these rivers have mean annual flows of less than 30 cubic meters/second which is the validated minimum water discharge that was used to establish the BQART equation (Cohn et al., 2011; Syvitski JPM, 2019).

Of the 60 rivers included in this research, 48 rivers have mean annual flows of less than 30 cubic meters/second. With respect to the Michigan rivers with mean annual flows of less than 30 cubic meters/second, 31% of the rivers have BQART sediment delivery estimates that are within 25% of the USACE (2010) Great Lakes regional trend line (Barkach JH et al, 2020). Of these 48 rivers, the BQART sediment delivery estimates were on average 31% smaller than the USACE (2010) Great Lakes regional trend line. The global BQART equation provides lower estimates of the watershed sediment delivery in comparison to the USACE (2010) Great Lakes regional trend line for rivers with mean annual flow rates of <30 cubic meters/second (Barkach JH et al, 2020).

Of the 12 Michigan rivers with mean annual flows greater than 30 cubic meters/second, 50% of the rivers have BQART sediment delivery estimates that are within 25% of the USACE (2010) Great Lakes regional trend line. Further, these 12 rivers have global BQART sediment delivery estimates that were on average 32% larger than the corresponding USACE (2010) Great Lakes regional trend line estimate. Of these 12 rivers, two stand out. The BQART watershed sediment delivery estimates for the Manistee River and Muskegon River were 109% and 107% larger than the corresponding USACE (2010) Great Lakes regional trend line estimate. The percent differences between the BQART model estimate and the USACE (2010) Great Lakes regional trend

line estimate of greater than 30% were noted in three other rivers with mean annual river flows >30 cubic meters/second including the Portage River (33%), Ontonagon River (44%), and Menominee River (32%). With respect to the Manistee River, Muskegon River, Portage River, Ontonagon River, and Menominee River, the relief term (R) is greater than 0.34 kilometers for all five rivers. The relief term (R) for the remaining seven rivers averages 0.23 kilometers reflecting the low gradient streams common in Michigan. The differences in watershed sediment delivery between these two methods appears to be due, at least in part, to the value used for the relief term (R) of the global BQART equation (Barkach JH et al, 2020).

In addition to comparison of the global BQART watershed sediment delivery estimates to the USACE (2010) Great Lakes regional trend line, both methods were compared to calibrated hydrodynamic and sediment transport models that were completed by the USACE (Barkach JH et al, 2020). The USACE 516(e) studies were completed on six of the 60 rivers included in this research: the Saginaw River watershed (USACE, 1999 and 2000), the Clinton River watershed (USACE, 2005), the St. Joseph River watershed (USACE, 2007a), the Grand River watershed (USACE, 2007b), the Sebewaing River watershed (USACE, 2007c), and the Ontonagon River watershed (USACE, 2010a).

The Saginaw River is the largest watershed in Michigan (15,882 square kilometers) and due to the river's high watershed sediment delivery to Saginaw Bay (Lake Huron), is arguably the most studied. With respect to the Saginaw River watershed, the mean annual flow rate is 124.9 cubic meters/second. The watershed sediment delivery

predicted using the global BQART equation is estimated to be 290,000 tonnes/year to Saginaw Bay (Lake Huron). The global BQART estimate is very similar to the watershed sediment delivery estimate of 250,000 tonnes/year that was prepared in conjunction with the USACE's (1999, 2000) 516(e) program. The USACE (2010) Great Lakes regional trend line predicts a watershed sediment delivery of 300,000 tonnes/year which is nearly identical to the global BQART watershed sediment delivery estimate of 290,000 tonnes/year.

The most recent USACE 516(e) study was completed on the Ontonagon River (USACE, 2010). The Ontonagon River covers 3,585 square kilometers and has a mean annual flow rate of 39.4 cubic meters/second. Using calibrated hydrodynamic and sediment delivery models, the USACE estimated watershed sediment delivery of 180,000 tonnes/year to Lake Superior. The USACE (2010) Great Lakes regional trend line and the global BQART equation predict watershed sediment delivery of 97,000 and 140,000 tonnes/year, respectively. U.S. Geological Survey sediment gages with long-term records are rare in Michigan; however, a USGS gage with over 20 years of measurements is located on the Ontonagon River. Using the USGS sediment gage data, the USACE (2010a) estimated that the average annual watershed sediment delivery to Lake Superior is approximately 140,000 tonnes/year (Barkach JH et al, 2020). In this case, the global BQART watershed sediment delivery estimate was similar to the USACE 516(e) study and the watershed sediment delivery estimate completed using the USGS Ontonagon River sediment gage, and less similar to the USACE (2010a) Great Lakes regional trend line.

27

Four other USACE 516(e) studies were completed by the USACE, two on rivers that have mean annual flow rates of less than 30 cubic meters/second (Sebewaing River and the Clinton River) and two on rivers with mean annual flow rates greater than 30 cubic meters/second (St. Joseph River and the Grand River). The Sebewaing River and Clinton River discharge to Lake Huron and Lake St. Clair, and have mean annual flow rates of 1.6 cubic meters/second and 17.6 cubic meters/second, respectively. With respect to the Sebewaing River, the watershed delivery estimates are 5,200 tonnes/year (USACE 516(e) study), 13,000 tonnes/year (USACE Great Lakes regional trend line), and 3,200 tonnes/year (global BQART equation). With respect to the Clinton River, the watershed sediment delivery estimates are 73,000 tonnes/year (USACE 516(e) study), 27,000 tonnes/year (USGS sediment gage), 63,000 tonnes/year (USACE Great Lakes regional trend line), and 18,000 tonnes/year (global BQART equation). In the case of the rivers with mean annual river flows smaller than 30 cubic meters/second, the variability of the watershed sediment delivery estimates is high and the BQART watershed sediment delivery equation typically predicts less sediment delivery than the USACE (2010) Great Lakes regional trend line (see Figure 9).

The St. Joseph River and the Grand River discharge to Lake Michigan and are two of the largest rivers included in this research with mean annual flow rates of 132.5 cubic meters/second and 127.1 cubic meters/second. With respect to the Grand River, the three watershed sediment delivery estimates were very similar, with 250,000 tonnes/year (USACE 516(e) study), 280,000 tonnes/year (USACE Great Lakes regional trend line), and 260,000 tonnes/year (global BQART equation). With respect to the St. Joseph River, the watershed sediment delivery estimates are 76,000 tonnes/year (USACE 516(e)

study), 250,000 tonnes/year (USACE Great Lakes regional trend line), and 290,000 tonnes/year (global BQART equation). The variability of the watershed sediment delivery estimates may be due to the large number of dams located on this river. As discussed in the USACE (2007b) 516(e) study, 190 dams are located within the St. Joseph River watershed of which 95 are considered large dams. USACE (2007b) estimates that only 13% of the watershed can drain directly to the river outlet and that up to 80% of the suspended sediment is trapped by the large network of dams located within this watershed.

Given the differences in the data sets used to develop the global BQART equation and the USACE (2010) Great Lakes regional trend line, the BQART equation can provide remarkably close estimates of watershed sediment delivery especially for rivers with mean annual flows greater than 30 cubic meters/second. The watershed sediment delivery estimates calculated using the global BQART equation are comparable to the USACE (2010a) Great Lakes regional trend line for many Michigan watersheds and implies that the global and Great Lakes regional processes of soil erosion, sediment transport, and sediment deposition are similar. With respect to rivers with mean annual flows greater than 30 cubic meters/second, the BQART equation appears to overestimate watershed sediment delivery in comparison the USACE (2010a) Great Lakes regional trend line; these higher estimates of watershed sediment delivery may be due in part to the value used for the relief (R) term of the BQART equation. Examples include the Muskegon River and Manistee River and, to a lesser extent, Portage River, Ontonagon River, and Menominee River. For the St. Joseph River, the importance of the sediment trapping efficiency of dams and natural lakes located within the watershed is evident based on the USACE 516(e) estimate of watershed sediment delivery in comparison to the global BQART equation and the USACE (2020) Great Lakes regional trend line.

2.8 Bedload Sediment Delivery Equations

Many equations have been developed to estimate bed material load and bedload (USACE, 1995; Garcia MH, 2008, Gray JR and Simoes JM, 2008; USDA, 2007). The Syvitski and Milliman (2007) BQART and USACE (2010) Great Lakes Regional Trend Line are examples of empirical watershed sediment delivery equations (see Sections 2.5 to 2.7). Excellent summaries of bedload load transport and sediment transport equations are contained in Armijos et al (2021); Einstein HA (1950); Garcia MH (2008); Gomez B and Church M (1989); Gray JR and Simoes JM (2008); USACE (1995), and USDA (2007).

Two approaches to bedload sediment delivery equations are used, one is based on direct measurement and the second is based on hydraulic parameters and sediment transport potential. Because bed load travels within a few grain diameters of the river bed by rolling, sliding, and saltating along the bed of the river, this creates significant difficulties in measuring bedload in natural streams and for this reason, a significant majority of the bedload equations were developed from laboratory flume experiments (Armijos et al, 2021; Gomez B and Church M, 1989; Gray JR and Simoes JM, 2008; USDA, 2007).

ASCE (1982) ranked bedload material transport equations using 40 sets of field data and 165 sets of laboratory flume data; with respect to bedload equations, Bagnold RA (1956), Meyer-Peter and Muller (1948), and Yalin MS (1963) were ranked highest. Similar recommendations regarding bedload sediment transport equations were included in the USDA (2007) National Engineering Handbook 654, the three bedload sediment transport equations provided in STREAMTools Sediment Transport Module 4.0 include: Ackers P and White WR (1973), Meyer-Peter and Muller (1948), and Einstein HA (1950). Ackers P and White WR (1973) bedload equation is a function of river depth, slope, the D_{35} of the river bed material (35% of the bed material is finer), and the roughness of the river bed (Manning's n). The Einstein HA (1950) bedload equation is a function is a function of river depth, river slope, and the D_{50} of the river bed material. Meyer-Peter and Muller (1948) bedload equation is based on the energy slope of the river and is a function of river depth, river slope, and the D_{50} of the river bed material. The Meyer-Peter and Muller (1948) equation is a good example of a bedload sediment delivery equation and is presented as follows (Meyer-Peter and Muller, 1948; Armijos E et al, 2021):

$$\gamma \left(\frac{\kappa_{st}}{\kappa_{r}}\right)^{3/2} S = 0.47(\gamma S - \gamma)d + 0.25pw^{1/3}qbw^{2/3}$$
(9)

where,

q_{bw} = submerged weight of transported sediment [tonnes/sec)/m]

S = slope (meter/meter)

 γ = specific weight of water (tonnes/cubic meters)

 γ_s = specific weight of water (tonnes/cubic meters)

 p_w = specific weight of water (tonnes per second²/meter⁴)

K_{st} = bed roughness (dimensionless)

K_r = particle roughness (dimensionless)

 $d = d_{50}$ grainsize (meter)

With respect to the USDA (2007) NEH 654 STREAMTools bedload equations, all three equations are based on either laboratory flume studies (Ackers P and White WR, 1973; Einstein HA, 1950) or bedload measurements in small structures (Meyer-Peter and Muller, 1948), a summary of the test conditions that served as the basis of these three common bedload sediment delivery equations are presented on Table 1. As shown in Table 1, the data used to develop these bedload equations are based laboratory flume experiments and field data collected from small structures (water depths of less than four feet deep and structure widths of less than seven feet wide). Leopold LB and Emmett WW (1997) summarized the problem as follows: "it would be highly desirable to have direct measurements of the bed-load transport in a natural river and of the concomitant hydraulic characteristics of the flow. The problem has been particularly intractable, because no sampling device has been available that would provide reliable and repeatable measurements of the debris load moving along the bed of the river."

Due to these limitations in collection of field data to calibrate bedload sediment equations, most bed-load and bed-material-load equations were derived from a comparatively restricted database, and their utility has been established on the basis of relatively few field data (Gomez and Church 1989). Further, although the measurements of sediment-transport rates in the laboratory can be quite accurate, they do not represent natural river conditions well (Gray JR and

Ackers P and White WR (1973)	Laboratory Flume Data
Particle Size (mm)	0.4 - 7
Specific Gravity	1.0 – 2.7
Multiple Size Classes	No
Water Velocity (ft/sec)	0.7 - 7.1
Depth (feet)	0.01 - 1.4
Slope (ft/ft)	0.00006 - 0.037
Width (feet)	0.23 - 4
Water Temperature (°F)	46 -89
Meyer-Peter and Muller (1948)	Data Range
Particle Size (mm)	0.4 - 29
Specific Gravity	1.25 - 4
Multiple Size Classes	Yes
Water Velocity (ft/sec)	1.2 – 9.4
Depth (feet)	0.03 – 3.9
Slope (ft/ft)	0.0004 - 0.02
Width (feet)	0.5 - 6.6
Water Temperature (°F)	Not reported
Einstein HA (1950)	Laboratory Flume Data
Particle Size (mm)	0.78 - 29
Multiple Size Classes	Yes
Water Velocity (ft/sec)	0.9 – 9.4
Depth (feet)	0.03 - 3.6
Slope (ft/ft)	0.00037 – 0.018
Width (feet)	0.66 - 6.6
Water Temperature (°F)	Not reported

Table 1. Summary of Laboratory Test Conditions, Three Bedload Sediment Transport Equations (Thomas WA, Copeland RR, McComas DN, 2002: USDA, 2007)

Simoes FJM). Leopold and Emmett (1997) observed that a river's ability to adjust its cross section to a variety of flows is a characteristic not shared by a fixed-wall laboratory flume. For these reasons, this research focused on the development of an empirical bedload watershed sediment delivery equation based on the characteristics of the fluvial system and watershed.

CHAPTER 3 METHODS

This research utilized a series of geospatial data sets including digital terrain models, watershed boundaries, soil type, surficial geology, and land use that are readily available through the State of Michigan (2020) Geographic Information System (GIS) Open Data Portal. In addition, the Michigan Department of Environment, Great Lakes, and Energy (EGLE), Hydrologic Studies and Dam Safety Unit completed mean annual river flow and recurrence interval flow calculations for all 60 watersheds and five sub-watersheds, and provided contributing watershed areas for 45 of the 60 watersheds. The USACE-Detroit District provided extensive dredging data extending back to the early- to mid-1960's for 30 watersheds that were incorporated into this research as well as guidance regarding current estimates of future dredging and dredging backlog data for each harbor and navigation channel.

The 60 Michigan rivers included in this research encompass a total watershed area of 128,043 square kilometers; 119,622 square kilometers are located within in the State of Michigan and 8,421 square kilometers extend into adjoining States. Land use data was obtained from the 2011 version of the National Land Cover Database (USDA, 2011). The GIS and watershed data are provided for the total watershed area and are summarized in an Appendix for each watershed included in this research. Each watershed Appendix includes (see Appendices A through PPP):

- A summary of watershed hydrology including:
 - A map index showing the location of the watershed within the State of Michigan
 - The location of the river and tributaries (USGS, 2020)

- The location of dams within the watershed that are listed in the National Inventory of Dams database (USACE, 2018)
- The location and identification number of USGS gages with 20 or more years of daily discharge records (USGS, 2020)
- An aerial photograph and coordinates of either the river outlet or USACE navigation channel outlet
- A digital elevation map of the watershed (State of Michigan, 2020)
- A land use map of the watershed (NLCD, 2011)
- Surficial geology map of the watershed (Farrand WR and Bell DL, 1982)

With respect to watersheds that extend outside of the State of Michigan, GIS data from the U.S. Department of Agriculture Geospatial Data Gateway (USDA, 2019) and the U.S. Geological Survey (USGS, 2019a) National Map Viewer were used.

3.1 Watershed Area

The 60 Michigan watersheds that were included in this research range in size from the Falls River (48) with a contributing watershed area covering 117 square kilometers to the Saginaw River watershed (32) covering 15,882 square kilometers (see Figure 4; EGLE, 2021). Together, the area of these 60 watersheds covers 128,043 square kilometers of which 119,622 square kilometers are located within in the State of Michigan and 8,421 square kilometers extend into adjoining States. These 60 watersheds drain toward four Great Lakes and their corresponding connecting channels (Figure 4). Of the 60 rivers included in this research, the percentage of watershed area discharging to Lake Michigan, Lake Huron, Lake Superior, and Lake Erie is 56%, 25.1%, 9.9%, and 9.0% of the total watershed area of 128,043 square kilometers.

The Michigan Department of Environment, Great Lakes and Energy provided contributing watershed areas for 45 of the 60 watersheds, and four of five subwatersheds. If a contributing watershed area was not available, then the total watershed area is listed in Table 2, Table 3, Table 4, Table 5, and Table 6. With respect to Table 2, Table 3, Table 4, and Table 5, total watershed area is presented for the following rivers (and watershed reference numbers): Clinton River (12), Kalamazoo River (17), Pine River (27), River Raisin (29), Rifle River (30), Rouge River (31), St. Joseph River (34), Manistique River (49), Menominee River (50), Ontonagon River (53), Portage River (55), Sturgeon River (58), Tahquamenon River (60), Two Hearted River (61), and Waiska River (62).

3.2 Mean Annual River Flow and Recurrence Interval Flows at the River Outlet

A key enabler of this research is the extensive data set that was provided by EGLE's Hydrologic Studies and Dam Safety Unit. EGLE provided the mean annual river flow and recurrence interval flows (1.5 year, 2.0 year, 5 year, 10 year, 25-year, 50 year, and 100-year) for all 60 watersheds (and five sub-watersheds) at the point where the river discharges into a Great Lake, Great Lake connecting channel, or reservoir. The average value of the mean annual flow rates of the 60 Michigan rivers included in this research is 22 cubic meters/second, and range in value from 1.0 cubic meters/second (Days River; 44) to 132.5 cubic meters/second (St. Joseph River; 34). The exceedance flows provide

by EGLE's Hydrologic Studies and Dam Safety Unit were developed from one of following three sources:

- Calculation of exceedance flows using the Drainage Area Ratio to a USGS gage using log-Pearson III statistical analysis incorporating USGS Bulletin 17C methodology (IACWD, 1982; USGS, 2019b).
- Exceedance flows contained in an existing Federal Emergency Management Agency (FEMA) Flood Insurance Study; virtually all FEMA Flood Insurance Studies utilized log-Pearson III statistical analysis.
- If a USGS gage was not present in the watershed, the USGS (1984a and 1994)
 Regression Method was utilized.

For 28 of the 60 watersheds and three of five sub-watersheds, the recurrence interval flows were calculated using annual peak flow data from a USGS gage located on the river, closest to the river outlet. EGLE typically only used USGS gages that have at least 20 years of daily discharge records (USGS, 2020). EGLE utilized USGS Bulletin 17C methodology (IACWD, 1982; USGS, 2019b) to calculate recurrence interval flows. A log-Pearson Type III statistical analysis was conducted by EGLE on annual peak flow data from the most downstream USGS gage located within the watershed, and adjusted using the Drainage Area Ratio (DAR) to estimate the recurrence interval flows at the river outlet to the Great Lake or connecting channel (USDA, 1972; USGS, 2005; Ries III KG, 2007; MDOT, 2018).

										Reccure	Reccurence Interval Flow at the River Outlet	al Flow at	the River	Outlet
				Maximum	Average	Mean								
Watershed		Watershed		Watershed	Watershed	Annual								
Reference		Area	Watershed	Relief	Relief	River Flow 1.5 year	1.5 year	2.0 year	5 year	10 year	25 year	50 year	100 year	
Number	River	(kilometers ²)	kilometers ²) Area Basis	(meters)	(meters)	(m ³ /sec)	(m ³ /sec)	(m ³ /sec)	EGLE Basis					
48	Falls River ³	117	Contributing	392.6	212.7	1.2	15.6	18.4	25.5	31.1	36.8	42.5	48.1	Regression
39	Au Train	285	Contributing	151.6	88.3	4.0	11.3	14.2	24.1	31.1	39.6	45.3	51.0	DAR to Gage #04044724
62	Waiska River ^{2,3}	383	Total	104.6	36.8	5.9	48.1	56.6	76.5	87.8	104.8	116.1	127.4	Regression
43	Chocolay River	399	Contributing	257.6	108.5	10.8	36.8	45.3	68.0	82.1	101.9	116.1	130.3	FIS (Marquette County, 2016)
45	Dead River ³	422	Contributing	381.6	269.3	5.7	34.0	39.6	51.0	56.6	68.0	73.6	82.1	Regression
61	Two Hearted River ²	536	Total	166.6	60.7	9.1	34.0	39.6	56.6	70.8	87.8	101.9	118.9	DAR to Gage #04044813
40	Black River (Gogebic)	660	Contributing	366.0	263.4	8.5	99.1	127.4	201.0	260.5	339.8	424.8	509.7	DAR to Gage #04031000
51	Montreal River	669	Contributing	387.2	256.0	9.3	73.6	90.6	138.8	172.7	220.9	254.9	283.2	DAR to Gage #04029990
56	Presque Isle River	935	Contributing	386.9	284.7	10.8	76.5	90.6	121.8	141.6	164.2	181.2	198.2	DAR to Gage #04032000
60	Tahquamenon River ²	2,095	Total	170.6	61.0	26.9	113.3	127.4	158.6	178.4	198.2	215.2	229.4	DAR to Gage #04045500
55	Portage River ^{1,2}	2,572	Contributing	359.6	155.8	40.5	175.6	201.0	266.2	311.5	339.8	396.4	424.8	DAR to Gage #04042300 ext. #04041500
53	Ontonagon River ²	3,585	Total	382.6	235.7	39.4	249.2	311.5	509.7	623.0	792.9	934.5	1076.0	FIS (Village of Ontonagon, 1983)
	Minimum:	117		104.6	104.6	1.2	11.3	14.2	24.1	31.1	36.8	42.5	48.1	
	Average:	1,057		292.3	292.3	14.3	80.6	96.9	141.5	170.6	207.9	241.9	273.3	
	Maximum:	3,585		392.6	392.6	40.5	249.2	311.5	509.7	623.0	792.9	934.5	1076.0	

Table 2. Characteristics of 12 Michigan Rivers Located Within the Lake Superior Watershed

 Total Area:
 12,688

 EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy
 EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy

 Footnote 1. Sub-basin, area-weighted maximum watershed elevations were calculated using the individual sub-basins; these include watersheds 1, 2, 10, 14, 32, 34, 50, and 55.

 Footnote 2. Total Watershed Area.

 Footnote 3. Recurrence interval flows were calculated using the USGS (1984) Regression Method.

Watershed	
Michigan	,
Lake	
the	
Within	
Located	
Rivers Loc	
Michigan	,
f 26	
. Characteristics of	
Table 3.	

										Reccurt	ance Interv	Reccurence Interval Flow at the River Outlet	t the River	r Outlet
				Maximum	Average	Mean								
Watershed	T	Watershed		Watershed	Watershed									
Reference		Area	Watershed	Relief	Relief	River Flow	1.5 year	2.0 year	5 year	10 year	25 year	50 year	100 year	
Number	River	(kilometers ²)	Area Basis	(meters)	(meters)	(m ³ /sec)	(m ³ /sec)	EGLE Basis						
44	Days River ³	161	Contributing	145.6	76.1	1.0	12.5	15.6	22.7	28.3	34.0	39.6	45.3	Regression
19	Lincoln River	256	Contributing	81.6	33.1	2.8	21.2	24.1	31.1	36.8	42.5	48.1	53.8	Previous DAR to Regression
57	Rapid River	357	Contributing	173.6	93.3	1.2	34.0	39.6	53.8	62.3	73.6	82.1	93.4	FIS (Delta County, 1998)
28	Platte River	360	Contributing	188.6	74.7	5.4	13.6	15.6	19.8	22.7	25.5	28.3	31.1	DAR to Gage #04126740 ext. #04127800
2	Big Sable	427	Contributing	158.6	40.9	5.7	13.0	15.6	21.2	25.5	31.1	34.0	39.6	DAR to Gage #04123000
24	Pentwater River ³	430	Contributing	128.6	47.1	5.1	39.6	48.1	65.1	76.5	90.6	104.8	116.1	Regression Gage #04127800
8	Macatawa River	451	Contributing	57.6	23.1	5.4	107.6	144.4	235.0	311.5	396.4	481.4	566.3	DAR to Gage #04108800
58	Sturgeon River ²	567	Total	127.6	58.1	6.2	31.1	36.8	45.3	53.8	59.5	65.1	70.8	DAR to Gage #04057510
6	Boardman	572	Contributing	219.6	122.9	8.8	18.4	21.2	28.3	34.0	42.5	48.1	51.0	FIS (City of Traverse City, 1982)
4	Betsie River	603	Contributing	186.6	73.6	8.2	25.5	26.9	31.1	36.8	39.6	41.1	43.9	DAR to Gage #04126600
7	Black River (West)	738	Contributing	69.6	28.2	10.2	17.0	24.1	45.3	65.1	93.4	116.1	147.2	FIS (Van Buren County, 2009)
10	Pine River ^{1,3}	808	Contributing	208.6	83.6	13.0	53.8	65.1	85.0	96.3	113.3	121.8	133.1	Regression Gage #04127800
63	Whitefish River ³	811	Contributing	202.6	93.2	8.8	65.1	79.3	107.6	127.4	152.9	172.7	192.6	Regression
42	Cedar River	976	Contributing	173.6	66.2	7.6	48.1	59.5	85.0	101.9	124.6	141.6	161.4	DAR to Regression
13	Elk River ³	1,035	Contributing	275.6	89.9	20.1	28.3	34.0	42.5	48.1	53.8	59.5	62.3	Regression
37	White River	1,178	Contributing	204.6	68.7	16.7	45.3	56.6	85.0	107.6	135.9	158.6	184.1	DAR to Gage #04122200
47	Ford River	1,197	Contributing	295.6	150.2	10.5	70.8	82.1	110.4	127.4	150.1	164.2	181.2	DAR to Gage #04059500
25	Pere Marquette River	1,673	Contributing	249.6	92.7	22.4	51.0	59.5	82.1	96.3	113.3	124.6	138.8	DAR to Gage #04122500
46	Escanaba River	2,341	Contributing	372.6	196.9	24.6	144.4	169.9	229.4	266.2	311.5	339.8	368.1	DAR to Gage #04059000
49	Manistique River ²	3,792	Total	295.6	150.2	51.5	198.2	235.0	311.5	368.1	453.1	509.7	566.3	DAR to Gage #04056500
20	Manistee River	4,349	Contributing	342.6	147.8	65.7	155.7	172.7	203.9	223.7	246.4	263.3	277.5	DAR to Gage #04126000
17	Kalamazoo River ²	5,260	Total	204.6	87.2	51.5	127.4	152.9	212.4	254.9	311.5	368.1	424.8	DAR to Gage #04108500
22	Muskegon River	6,550	Contributing	345.6	149.4	66.0	175.6	203.9	277.5	339.8	396.4	453.1	509.7	DAR to Gage #04122000
50	Menominee River ^{1,2}	10,500	Total	371.6	223.4	101.4	339.8	396.4	538.0	651.3	792.9	906.1	1019.4	DAR to Gage #04067500
34	St. Joseph River ^{1,2}	12,196	Total	195.6	89.9	132.5	311.5	368.1	453.1	509.7	566.3	623.0	651.3	FIS (Berrien County, 2006)
14	Grand River ¹	14,100	Contributing	169.6	77.4	127.1	481.4	594.7	849.5	1047.7	1302.6	1500.8	1727.3	FIS (Ottawa County, 2013)
	Minimum:	161		57.6	23.1	1.0	12.5	15.6	19.8	22.7	25.5	28.3	31.1	
	Average:	2,757		209.4	93.8	30.0	101.2	120.8	164.3	196.9	236.7	269.1	302.2	
	Maximum:	14,100		372.6	223.4	132.5	481.4	594.7	849.5	1047.7	1302.6	1500.8	1727.3	
	Total Area:	71,690												

 Total Area:
 71,690

 EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy
 EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy

 Footnote 1.
 Sub-basin, area-weighted maximum watershed elevations were calculated using the individual sub-basins; these include watersheds 1, 2, 10, 14, 32, 34, 50, and 55.

 Footnote 2.
 Total Watershed Area.

 Footnote 3.
 Recurrence interval flows were calculated using the USGS (1984) Regression Method.

										Reccure	Reccurence Interval Flow at the River Outlet	al Flow at	: the River	Outlet
Watershed		Watershed		Maximum Watershed	Average Watershed	Mean Annual								
Reference		Area	Watershed	Relief	Relief	River Flow 1.5 year	1.5 year	2.0 year		10 year	25 year	50 year	100 year	
Number	River	(kilometers ²)	(kilometers ²) Area Basis	(meters)	(meters)	(m ³ /sec)	(m ³ /sec)	(m ³ /sec)	EGLE Basis					
38	Willow Creek ³	246	Contributing	82.6	44.9	1.8	31.1	39.6	56.6	70.8	90.6	101.9	116.1	Regression
33	Sebewaing River	269	Contributing	67.6	20.6	1.6	53.8	65.1	93.4	113.3	138.8	158.6	175.6	FIS (Huron County, 2008)
23	Oqueoc River ³	370	Contributing	112.6	63.4	3.4	12.2	13.6	17.0	19.8	21.2	24.1	25.5	Regression
26	Pigeon River	378	Contributing	74.6	29.2	2.5	34.0	48.1	85.0	107.6	141.6	167.1	192.6	Gage analysis, Gage #04158500.
41	Carp River ³	440	Contributing	127.6	65.6	4.0	70.8	76.5	85.0	93.4	101.9	107.6	110.4	Regression
52	Munuscong River ³	464	Contributing	135.6	33.2	5.7	73.6	82.1	101.9	118.9	135.9	147.2	158.6	Regression
18	Kawkawlin River	585	Contributing	60.6	22.1	3.7	51.0	62.3	87.8	107.6	130.3	150.1	169.9	FIS (Bay County, 2010)
1	Au Gres River ¹	629	Contributing	112.6	50.9	4.6	42.5	51.0	65.1	76.5	90.6	99.1	107.6	FIS (Arenac County, 2015)
54	Pine River	710	Contributing	127.6	55.8	8.5	82.1	93.4	124.6	144.4	169.9	186.9	203.9	DAR to Gage #04127918
30	Rifle River ²	984	Total	279.6	101.2	10.2	62.3	70.8	96.3	110.4	130.3	141.6	155.7	DAR to Gage #04142000
36	Thunder Bay River	3,116	Contributing	256.6	86.7	24.1	107.6	138.8	218.0	274.7	339.8	396.4	453.1	DAR to Gage #04135000
11	Cheboygan River	3,691	Contributing	295.6	85.9	37.7	76.5	82.1	99.1	107.6	118.9	127.4	133.1	FIS (Cheboygan County, 2012)
2	Au Sable River ¹	4,351	Contributing	278.6	164.6	42.2	96.3	104.8	130.3	144.4	164.2	172.7	186.9	FIS (losco County, 2012)
32	Saginaw River ^{1,2}	15,882	Contributing	197.6	66.6	124.9	764.6	877.8	1161.0	1330.9	1557.4	1699.0	1868.9	FIS (Bay County, 2010)
	Minimum:	246		60.6	20.6	1.6	12.2	13.6	17.0	19.8	21.2	24.1	25.5	
	Average:	2,294		157.8	63.6	19.6	111.3	129.0	172.9	201.5	238.0	262.8	289.8	
	Maximum:	15,882		295.6	164.6	124.9	764.6	877.8	1161.0	1330.9	1557.4	1699.0	1868.9	

Table 4. Characteristics of 14 Michigan Rivers Located Within the Lake Huron Watershed

~
8
Ľ
<u>s</u>
5
Ĕ
(a
5
rie ∨
.₩
ш
ake
a l
Ľ
đ٦
٣
ŧ
-
Ξŧ
2
\leq
<u>Š</u>
ŧ
ğ
ğ
Ц
5
4
Ψ
<u>≤</u>
Rive
Rive
an Rive
gan Riv∈
higan Riv€
chigan Riv∈
∕lichigan Rive
Michigan Rive
nt Michigan Rive
nt Michigan
ght Michigan
Eight Michigan Rive
ght Michigan
e 5. Characteristics of Eight Michigan
e 5. Characteristics of Eight Michigan
ght Michigan

										Reccure	Reccurence Interval Flow at the River Outlet	al Flow at	the River	Outlet	
				Maximum	Average	Mean									
Watershed		Watershed		Watershed	Watershed	Annual									
Reference		Area	Watershed	Relief	Relief	River Flow 1.5 year 2.0 year 5 year 10 year 25 year 50 year 100 year	1.5 year	2.0 year	5 year	10 year	25 year	50 year	100 year		
Number	River	(kilometers ²)	(kilometers ²) Area Basis	(meters)	(meters)	(m ³ /sec)	(m ³ /sec)	m ³ /sec)	m ³ /sec)	EGLE Basis	Receiving Water				
35	Stoney Creek	319	Contributing	72.8	45.2	2.4	19.8	25.5	42.5	53.8	70.8	82.1	104.8	FIS (Monroe County, 2014)	Lake Erie
27	Pine River ²	505	Total	80.3	33.8	8.5	53.8	68.0	107.6	135.9	169.9	201.0	232.2	FIS (Saint Clair County, 2010)	St. Clair River
æ	Belle River	588	Contributing	151.3	61.2	4.2	59.5	73.6	107.6	130.3	161.4	184.1	209.5	FIS (Saint Clair County, 2010)	St. Clair River
31	Rouge River ²	1,204	Total	131.3	49.4	8.8	85.0	116.1	206.7	283.2	396.4	481.4	594.7	DAR to USGS Gage #04166500	Detroit River
9	Black River (East)	1,839	Contributing	131.7	58.9	12.5	186.9	220.9	311.5	356.5	424.8	476.0	522.4	FIS (Saint Clair County, 2010)	St. Clair River
12	Clinton River ²	2,064	Total	190.0	68.8	17.6	28.3	45.3	76.5	101.9	135.9	167.1	192.6	FIS (Macomb County, 2013)	Lake St. Clair
15	Huron River	2,258	Contributing	188.8	101.3	16.7	76.5	99.1	150.1	203.9	260.5	311.5	339.8	FIS (Wayne County, 2013)	Lake Erie
29	River Raisin ²	2,771	Total	199.3	75.6	22.5	135.9	164.2	240.7	283.2	339.8	396.4	481.4	FIS (Monroe County, 2014)	Lake Erie
	Minimum:	319		72.8	33.8	2.4	19.8	25.5	42.5	53.8	70.8	82.1	104.8		
	Average:	1,444		143.2	61.8	11.6	80.7	101.6	155.4	193.6	244.9	287.5	334.7		
	Maximum:	2,771		199.3	101.3	22.5	186.9	220.9	311.5	356.5	424.8	481.4	594.7		
	Total Area:	11,549													

EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy Footnote 1. Sub-basin, area-weighted maximum watershed elevations were calculated using the individual sub-basins; these include watersheds 1, 2, 10, 14, 32, 34, 50, and 55. Footnote 2. Total Watershed Area. Footnote 3. Recurrence interval flows were calculated using the USGS (1984) Regression Method.

Table 6. Sub-Watersheds, Mio Dam (2A), Brown Bridge Dam (9A), Webber Dam (14A), Ford Dam (15A), and Riley Dam (34A)

							14000							
ver Outlet				EGLE Basis	Gage #04136500	DAR to Gage #04127000	DAR to City of Portland FIS, Gage #04114000	FIS (Washtenaw Countywide 2012)	FIS (Berrien County, 2006)					
v at the Ri			100 year	(m ³ /sec)	133.1	28.3	707.9	283.2	110.4	28.3	252.6	707.9		
erval Flow			50 year	(m ³ /sec)	124.6	26.9	623.0	246.4	99.1	26.9	224.0	623.0		
Reccurence Interval Flow at the River Outlet			25 year	(m ³ /sec)	116.1	24.1	509.7	212.4	87.8	24.1	190.0	509.7		
Recc			10 year	(m ³ /sec)	104.8	21.2	396.4	167.1	73.6	21.2	152.6	396.4		
			5 year	(m ³ /sec)	96.3	18.4	311.5	135.9	59.5	18.4	124.3	311.5		
			2.0 year	(m ³ /sec)	82.1	14.2	181.2	90.6	42.5	14.2	82.1	181.2		
			1.5 year	(m ³ /sec)	73.6	12.7	135.9	73.6	36.8	12.7	66.5	135.9		
	Mean	Annual	River Flow 1.5 year 2.0 year 5 year 10 year 25 year 50 year 100 year	(m ³ /sec)	28.0	4.5	36.0	17.8	13.3	4.5	19.9	36.0		
	Average	Watershed	Relief	(meters)	78.9	73.3	51.5	76.2	45.2	114.2	154.3	177.4		
	Maximum	Watershed	Relief	(meters)	177.4	153.3	172.4	154.4	114.2	114.2	154.3	177.4		
			Watershed	Area Basis	Contributing	Contributing	Contributing	Contributing	Total					•
		Watershed	Area	(kilometers ²)	2,735	311	4,501	2,018	1,357	311	2,184	4,501	10,922	
				Dam and Corresponding River (kilometers ²) Area Basis	2A. Mio Dam, Au Sable River	9A. Brown Bridge Dam, Boardman	14A. Weber Dam, Grand River	15A. Ford Dam, Huron River	34A. Riley Dam, St. Joseph River	Minimum:	Average:	Maximum:	Total Area:	
				Dam and	2A. Mio Da	9A. Brown	14A. Web	15A. Ford	34A. Riley					

EGLE - Hydrologic Studies Unit, Michigan Department of Environment, Great Lakes, and Energy Footnote 1. Sub-basin, area-weighted maximum watershed elevations were calculated using the individual sub-basins; these include watersheds 1, 2, 10, 14, 32, 34, 50, and 55. Footnote 2. Total Watershed Area. Footnote 3. Recurrence interval flows were calculated using the USGS (1984) Regression Method.

For 20 of the 60 watersheds and two sub-watersheds, EGLE used the flood discharge values reported in an existing FEMA Flood Insurance Study. FEMA's Flood Insurance Rate Maps (FIRMs) are used for regulatory purposes, so EGLE confirmed that the FEMA Flood Insurance Study was consistent with the FEMA Flood Insurance Rate Maps. The Flood Insurance Studies and Flood Insurance Rate Maps can be found at FEMA's online Map Service Center (FEMA, 2020). With respect to the exceedance flows developed in FEMA Flood Insurance Studies, virtually all were calculated using the Drainage Area Ratio (USDA, 1972; USGS, 2005; Ries III DK, 2007; MDOT, 2018) to a log-Pearson III statistical analysis of a USGS gage located at or near the river outlet.

For 12 of 60 watersheds, the USGS (1984a and 1994) Regression Analysis method was used to determine recurrence interval flows for watersheds that do not contain a USGS gage. These rivers (and watershed reference number) include: Pine River (10), Elk River (13), Oqueoc River (23), Pentwater River (24), Willow Creek (38), Carp River (41), Days River (44), Dead River (45), Falls River (48), Munuscong River (52), Waiska River (62), and Whitefish River (63). The Regression Analysis method was developed by USGS (1984a and 1994) and is based on Michigan streamflow data (Bent PC, 1970); these regression equations were developed for Michigan watersheds of up to 2,590 square kilometers and are based on USGS peak-discharge records available through 1982 and from 185 gaging stations with 10 or more years of record (USGS, 1984b and 1994).

There are 12 predictive variables used in the USGS (1984a, 1984b and 1994) Regression Analysis method to determine recurrence interval flows. These include: contributing watershed drainage area; main-channel slope; the percentage of mainchannel length that passes through swamp, lake, or pond; the slenderness ratio which is the square of river channel length divided by the drainage area; the 100-year, 24-hour rainfall event (centimeters); and the percentage of the contributing watershed covered by seven surficial geologic soil classifications (Farrand WR and Bell DL, 1982). The recurrence intervals for the USGS (1984b and 1994) Regression Analysis equations range up to 100 years.

3.3 Watershed Relief

The maximum and average watershed relief for each river and sub-watershed are shown in Table 2, Table 3, Table 4, Table 5, and Table 6 and represent the maximum and average topographic elevation subtracted from the receiving water elevation at the point where the river discharges to the Great Lake, Great Lake connecting channel, or reservoir (five sub-watersheds). With respect to the Great Lake elevations used in this research, the receiving water elevation represents the long-term average elevation from 1918 to 2018 (USACE, 2021d). The following receiving water elevations were utilized: Lake Superior (183.4 meters), Lake Huron and Lake Michigan (176.4 meters), Lake St. Clair (175.0 meters), and Lake Erie (174.2 meters). The Lake Erie watershed includes two Great Lakes connecting channels (the St. Clair River and the Detroit River) as well as Lake St. Clair (see Figure 4).

With respect to the five sub-watershed basins, the receiving water elevation of the corresponding reservoir was provided by the EGLE Hydrologic Studies and Dam Safety Unit. The following receiving water elevations were utilized: Mio Dam (2A), Au Sable

River (293.6 meters); Brown Bridge Dam (9A), Boardman River (242.7 meters); Webber Dam (14A), Grand River (208.6 meters); Ford Dam (15A), Huron River (208.6 meters); Riley Dam (34A), St. Joseph River (265.8 meters).

With respect to rivers that discharge to Great Lakes connecting channels such as the St. Clair River (Pine River, 27; Belle River, 3; and Black River-East, 6) and the Detroit River (Rouge River, 31), the receiving water elevation at the river outlet was calculated using the water surface slope of the connecting channel between the adjacent Great Lakes.

Of the 60 watersheds evaluated, eight watersheds are divided into major subbasins typically defined by glacial moraines (EGLE, 2019; Farrand WR and Bell DL, 1982). These rivers (and watershed reference number) include: Au Gres River (1), Au Sable River (2), Pine River (10), Grand River (14), Saginaw River (32), St. Joseph River (34), Menominee River (50), and Portage River (55). For these eight rivers, the maximum elevation of the watershed was calculated from the area-weighted maximum elevations of the individual sub-basins (Barkach JH et al, 2020). For example, with respect to the Saginaw River, the maximum elevation of the watershed (470.0 meters) occurs in the Tittabawassee sub-basin which accounts for 23% of the total watershed area. However, the area-weighted maximum elevation for the Saginaw River is 374.0 meters (see Table 7). Maximum relief (R) for the Saginaw River is 197.6 meters which is the difference between the area-weighted maximum relief (374.0 meters) and the receiving water elevation of Lake Huron (176.4 meters).

))
Au Gres Watershed (1)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
Au Gres Basin	632	62%	289
East Branch Au Gres Sub-basin	380	38%	289
Total (kilometers ²):	1,012	100%	289
Au Sable River Watershed (2)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
Au Sable River Sub-basin	4,574	86%	471
Pine River Sub-basin	731	14%	352
Total (kilometers ²):	5,305	100%	455
Pine River Watershed (10)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
Boyne Sub-basin	186	22%	397
Jordan Sub-basin	333	39%	445
Pine Sub-basin	341	40%	319
Total (kilometers ²):	860	100%	385
Grand River Watershed (14)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
Grand Sub-basin	5,650	39%	381
Red Cedar Sub-basin	1,192	8%	320
Looking Glass Sub-basin	807	6%	289
Maple Sub-basin	2,448	17%	320
Thornapple Sub-basin	2,197	15%	320
Flat Sub-basin	1,461	10%	351
Rogue Sub-basin	678	5%	335
Total (kilometers ²):	14,433	100%	346
•			

Watersheds
lief, Eight
Relief,
Maximum
Weighted
Area
Table 7.

St. Joseph River Watershed (34)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
St. Joseph Sub-basin	8,210	67%	390
Paw Paw Sub-basin	1,156	%6	324
Pigeon Sub-basin	1,024	8%	357
Elkhart Sub-basin	1,811	15%	328
Total (kilometers ²):	12,202	100%	372
Saginaw River Watershed (32)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)
Cass Sub-basin	2,251	14%	305
Flint Sub-basin	3,446	21%	365
Shiawassee Sub-basin	3,278	20%	359
Chippewa Sub-basin	2,656	17%	366
Tittabawassee Sub-basin	3,749	23%	470
Saginaw Sub-basin	651	4%	224
Total (kilometers ²):	16,031	100%	374
Menominee River Watershed (50)	Area (km)	Sub-basin Percentage	Maximum Relief (meters)

Menominee Sub-basin	ŀ		
	3,357	32%	509
Paint Sub-basin	1,695	16%	571
Brule Sub-basin	1,029	10%	578
Michigamme Sub-basin	1,874	18%	601
Pine (Wisconsin) Sub-basin	1,465	14%	562
Sturgeon (Dickinson) Sub-basin	1,115	11%	491
Total (kilometers ²): 1	10,535	100%	548
Portage River Watershed (55) Area	a (km)	Sub-basin Percentage	Area (km) Sub-basin Percentage Maximum Relief (meters)
Portage Sub-basin	679	26%	442
Sturgeon (Houghton) Sub-basin	1,890	74%	579
Total (kilometers ²):	2,569	100%	543

3.4 River Slope

The river slopes presented in Table 8, Table 9, Table 10, Table 11, and Table 12 were calculated one of two ways. River slopes identified as either USGS or EGLE on were calculated using USGS (1984b) methodology. Using the USGS (1984b) methodology, the slope of the main river channel is calculated from the difference in the streambed elevations between points 10 and 85 percent of the distance along the main river channel from the river outlet to the watershed basin divide, divided by 0.75 times the channel length. Using the USGS (1984b) method, the stream bed elevations were estimated from USGS topographic maps by extrapolating the streambed elevation data between topographic contour lines that cross the main river channel. With respect to Tables 5-8, river slopes calculated by EGLE utilized the USGS (1984b) method and those designated USGS were published previously (USGS, 1984b).

River slopes identified as WSU were calculated in a two-step process. First, the difference between the surface water elevation of the most upstream USGS gage within the watershed and the receiving water elevation (or reservoir surface water elevation for five sub-watersheds) was determined. This difference in elevation was then divided by the channel length between the USGS gage and the river outlet to arrive at the calculated river slope. The water surface elevation at the USGS gage was calculated by adding the average USGS (2020) gage depth to the elevation of the USGS gage was utilized. The river slopes presented on Table 8, Table 9, Table 10, Table 11, and Table 12 represent the river slope of the longest river channel reach using either the USGS (1984b) stream bed elevation method or the WSU water surface elevation method.

The slopes of the 60 Michigan rivers and five sub-watersheds that were evaluated in this research are relatively small and reflect Michigan's glacial heritage. Low gradient rivers are common in Michigan and throughout the Great Lakes basin. The multiple glacial advances within the Great Lakes basin resulted in watersheds underlain by a complex sequence of glacial moraines, ice contact deposits, glacial outwash plains, and glacial lake bed deposits (Bent PC, 1971; Flint RF, 1971; Farrand WR and Bell DL, 1982). Michigan's extensive glacial heritage has resulted in relatively small differences in topography at the watershed scale in comparison to the elevation of the receiving water (the corresponding Great Lake or Great Lakes connecting channel, or reservoir).

3.5 Watershed Curve Number

During the late 1990's, Geographical Information Systems (GIS) began to be used by the State of Michigan in conjunction with automated processing of many mapping functions, including the calculation of watershed runoff curve numbers (MDEQ, 2016; MDEQ, 2010; MDEQ, 1999). The Hydrologic Studies Program of the Michigan Department of Environment, Great Lakes, and Energy (EGLE) developed a system to automate runoff CN calculations by creating a set of GIS lookup tables used to identify each soil-land use combination and its associated watershed runoff CN. Each individual soil-land use combination has a runoff CN that was determined using NRCS (1986) methodology.

The NRCS publishes spatial and tabular data online through its Web Soil Survey (NRCS, 2020). Michigan is divided into 83 Counties; each County soil classification table is unique, and each Michigan County has a table identifying the hydrologic soils group

associated with each NRCS (1986) soil classification. To calculate the watershed runoff CNs, Michigan Resource Information System (MIRIS) land use data is utilized (MDNR, 1978). This set of shapefiles was used because its tables contain land use classification information set up for automated runoff CN processing. GIS processing of the watershed runoff CNs involves joining the soil and land use shapefiles (MDEQ, 2010; MDEQ, 2016). The two shapefiles are intersected to produce a shapefile where each polygon is associated with a single soil-land use combination. In this manner, one GIS shape file exists for each Michigan County that contains a runoff CN for each land use/soil type polygon.

To calculate the composite runoff CN for a watershed, the County shapefile is clipped to the watershed boundary. In many instances, the watershed in question covers more than one Michigan County. In this case, the GIS shape file for each County is clipped and the polygons for that particular watershed are combined into a single shapefile used to calculate the composite watershed CNs that are presented in Tables 7-11. The composite watershed CN is calculated by multiplying the area of each polygon by the unique CN for that particular land use/soil type combination. To calculate the watershed CN, the values of Area times Runoff CN are summed and divided by the watershed area (MDEQ, 2010; MDEQ, 2016; McCuen RH, 2004).

ake	
ie Lake	
in th	
ated	
Loc	
an Rivers Located in the	
л В	
.ē	
f 12 Mich	
of 12	
oes (
l Slop	
f and Slopes of	
ofi	
al R	
Annual Run	
S, A	
mbel	
Nu S	
Curve	
ed (ð
tersh	ershe
Wai	Superior Watershed
დ. თ	şrior
Table 8. Watershed Curve N	Sup∈

				Lake Superior Wat	ershed Rivers: C	Lake Superior Watershed Rivers: Curve Number Basis		2	River Slope Calculation	ion
		Annual							Slope: River	
Watershed		Watershed	Watershed	CN Watershed		Average Area of			Length	
Reference		Runoff	Curve Number	Area	Number of	CN Polygons	Polygon	River Slope	Evaluated	Slope Method
Number	River	(mm/year)	(CN)	(kilometers ²)	CN Polygons	(kilometers ²)	Area_CN	(m/m)	(meters)	Basis
48	Falls River	337	60.9	118	2,795	0.042	7,166	0.0053	10,794	EGLE
39	Au Train	439	67.4	284	4,472	0.064	19,162	0.0006	26,354	WSU
62	Waiska River	489	72.6	384	5,999	0.064	27,916	0.0013	40,023	EGLE
43	Chocolay River	851	63.5	398	8,098	0.049	25,258	0.0032	59,953	EGLE
45	Dead River	423	65.6	421	8,764	0.048	27,666	0.0045	72,735	EGLE
61	Two Hearted River	533	66.8	536	6,292	0.085	35,837	0.0010	65,561	EGLE
40	Black River (Gogebic)	406	77.6	632	21,092	0.030	48,999	0.0037	40,234	USGS
51	Montreal River	421	76.8	253	8,182	0.031	19,458	0.0042	72,023	WSU
56	Presque Isle River	363	76.0	770	30,739	0.025	58,536	0.0020	69,363	USGS
60	Tahquamenon River	405	68.3	2096	27,980	0.075	143,189	0.0002	107,826	NSGS
55	Portage River ¹	497	72.8	2569	65,300	0.039	186,894	0.0015	122,445	MSU
53	Ontonagon River	346	71.4	3492	103,805	0.034	249,396	0.0032	160,423	WSU
	Minimum Value:	337	60.9	118	2,795	0.025	7,166	0.0002		
	Average Value:	459	70.0	966	24,460	0.049	70,790	0.0026		
	Maximum Value:	851	77.6	3,492	103,805	0.085	249,396	0.0053		
	Area Weighted:	427	71.1	11,953	293,518	Totals: Lake Superior Watershed CN	or Watershed CN	0.0022		
, r	-									

Mean basin precipitation for the Lake Superior watershed is 759.1 millimeters; Basis: Hunter et al. (2015), mean precipitation 1900 to 2014.
 Mean basin temperature for the Lake Superior watershed is 3.11 °C; Basis: Hunter et al. (2015), period of record 1948 to 2014.

49

Curv	e 9. Watershed Curv gan Watershed
	->

hed ber		Annual							i	
									Slope: River	
		Watershed	Watershed	CN Watershed		Average Area of			Length	
		Runoff	Curve Number	Area	Number of	CN Polygons	Polygon	River Slope	Evaluated	Slope Method
	River	(mm/year)	(CN)	(kilometers ²)	CN Polygons	(kilometers ²)	Area_CN	(m/m)	(meters)	Basis
	Days River	195	69.8	159	3,007	0.053	11,100	0.0025	55,327	EGLE
	Lincoln River	341	67.4	257	11,494	0.022	17,340	0.0008	55,784	EGLE
	Rapid River	102	71.7	358	10,132	0.035	25,684	0.0027	67,771	EGLE
28 Plat	Platte River	471	54.1	361	9,567	0.038	19,515	0.0002	16,237	WSU
5 Bi	Big Sable	418	61.8	427	13,737	0.031	26,348	0.0004	27,412	WSU
24 Pentw	Pentwater River	374	60.7	430	16,448	0.026	26,129	0.0015	44,053	EGLE
8 Macat	Macatawa River	376	75.9	451	14,334	0.031	34,220	0.0001	20,847	WSU
58 Sturg	Sturgeon River	346	63.4	568	9,940	0.057	36,021	0.0012	68,236	NSGS
	Boardman	484	56.1	573	17,761	0.032	32,144	0.0020	38,968	WSU
	Betsie River	429	57.0	603	14,997	0.040	34,364	0.0003	20,376	WSU
7 Black R	Black River (West)	436	69.1	738	28,779	0.026	50,985	0.0007	39,107	NSGS
10 Pin	Pine River ¹	508	61.5	808	30,854	0.026	49,734	0.0020	65,045	NSGS
63 White	Whitefish River	341	6.69	811	16,841	0.048	56,688	0.0024	74,796	EGLE
42 Ced	Cedar River	247	76.8	577	33,277	0.029	75,035	0.0013	90,284	EGLE
13 Ell	Elk River	612	60.3	1299	28,262	0.046	78,363	0.0001	101,023	EGLE
37 Wh	White River	447	60.6	1179	33,739	0.035	71,516	0.0012	104,768	NSGS
47 For	Ford River	276	70.2	1195	31,622	0.038	83,852	0.0013	148,221	NSGS
25 Pere Mai	Pere Marquette River	422	58.7	1672	49,930	0.033	98,167	0.0011	109,757	NSGS
46 Escan	Escanaba River	332	65.1	2340	57,034	0.041	152,349	0.0019	152,853	WSU
49 Manis	Manistique River	429	67.7	3806	55,070	0.069	257,863	0.0005	137,438	NSGS
20 Mani	Manistee River	476	54.1	4347	110,636	0.039	235,048	0.0007	280,026	NSGS
17 Kalam	Kalamazoo River	309	70.8	5258	205,179	0.026	372,303	0.0006	236,574	NSGS
22 Muske	Muskegon River	318	63.9	7055	267,852	0.026	450,597	0.0005	332,011	WSU
50 Menor	Menominee River ¹	304	68.7	6563	176,674	0.037	451,050	0.0016	302,337	WSU
34 St. Jos	St. Joseph River ¹	343	72.4	7795	230,821	0.034	564,219	0.0011	290,828	WSU
14 Grai	Grand River ¹	284	75.2	14097	618,266	0.023	1,060,329	0.0003	345,590	WSU
Mi	Minimum:	102	54.1	159	3,007	0.022	11,100	0.0001		
AI	Average:	370	65.5	2,466	80,625	0.036	168,114	0.0011		
Ma	Maximum:	612	76.8	14,097	618,266	0.069	1,060,329	0.0027		
Area	Area Weighted:	343	68.2	64,128	2,096,253	Totals: Lake Michigan Watershed CN	an Watershed CN	0.0008		

				Lake Huron Wate	rshed Rivers: C	Lake Huron Watershed Rivers: Curve Number Basis		æ	River Slope Calculation	ion
		Annual							Slope: River	
Watershed		Watershed	Watershed	CN Watershed		Average Area of			Length	
Reference		Runoff	Curve Number	Area	Number of	CN Polygons	Polygon	River Slope	Evaluated	Slope Method
Number	River	(mm/year)	(CN)	(kilometers ²)	CN Polygons	(kilometers ²)	Area_CN	(m/m)	(meters)	Basis
38	Willow Creek	232	0.67	247	3,291	0.075	19,486	0.0014	41,263	EGLE
33	Sebewaing River	186	78.9	269	1,914	0.141	21,245	0.0015	29,773	NSGS
23	Oqueoc River	289	64.6	370	13,154	0.028	23,890	0.0012	68,875	EGLE
26	Pigeon River	208	80.6	378	3,686	0.102	30,439	0.0005	36,721	WSU
41	Carp River	284	72.8	440	9,415	0.047	32,027	0.0012	73,091	EGLE
52	Munuscong River	385	75.7	463	7,725	0.060	35,077	0.0006	56,270	EGLE
18	Kawkawlin River	198	79.2	585	13,961	0.042	46,344	0.0005	65,178	NSGS
1	Au Gres River ¹	228	75.0	630	23,995	0.026	47,242	0.0013	65,661	NSGS
54	Pine River	378	71.1	602	8,984	0.079	50,426	0.0003	20,019	WSU
30	Rifle River	327	67.0	987	45,997	0.021	66,107	6000.0	96,619	WSU
36	Thunder Bay River	244	66.8	3114	95,533	0.033	208,126	0.0007	80,752	WSU
11	Cheboygan River	322	61.5	3689	144,499	0.026	226,984	0.0035	78,413	WSU
2	Au Sable River ¹	306	55.9	4349	161,893	0.027	242,998	0.0008	196,019	WSU
32	Saginaw River ¹	248	75.5	15878	572,377	0.028	1,198,520	0.0004	187,162	WSU
	Minimum Value:	186	55.9	247	1,914	0.021	19,486	0.0003		
	Average Value:	274	71.7	2,293	79,030	0.052	160,636	0.0011		
	Maximum Value:	385	80.6	15,878	572,377	0.141	1,198,520	0.0035		
	Area Weighted:	270	70.0	32,107	1,106,424	Totals: Lake Huron Watershed CN	Watershed CN	0.000		
	1. Mean basin precipitation for the Lake Huron watershed is 809.7 millimeters; Basis: Hunter et al. (2015), mean precipitation 1900 to 2014.	ion for the Lake H	Huron watershed is	309.7 millimeters; B	asis: Hunter et	al. (2015), mean pre	cipitation 1900 to 2	014.		

Table 10. Watershed Curve Numbers, Annual Runoff and Slopes of 14 Michigan Rivers Located in the Lake Huron Watershed

Mean basin precipitation for the Lake Huron watershed is 809. / millimeters; basis: Hunter et al. (2012), mean precipitation 1.
 Mean basin temperature for the Lake Huron watershed is 6.99 °C; Basis: Hunter et al. (2015), period of record 1948 to 2014.

				Lake Erie Waters	thed Rivers: Cur	Lake Erie Watershed Rivers: Curve Number Basis			River Slop	River Slope Calculation	
Watershed		Annual Watershed	Watershed	CN Watershed		Average Area of			Slope: River Length		Receiving Water
Reference		Runoff	Curve Number	Area	Number of	CN Polygons	Polygon	River Slope	Evaluated	Slope Method	Elevation
Number	River	(mm/year)	(CN)	(kilometers ²)	CN Polygons	(kilometers ²)	Area_CN	(m/m)	(meters)	Basis	(meters)
35	Stoney Creek	233	75.7	319.5	8,810	0.036	24,179	0.0006	37,580	WSU	174.2
27	Pine River	530	77.6	504.1	8,883	0.057	39,126	6000.0	76,476	EGLE	175.7
ñ	Belle River	228	79.1	587.4	18,578	0.032	46,439	0.0007	60,796	WSU	175.7
31	Rouge River	230	81.5	1,180.5	39,365	0.030	96,163	0.0007	60,711	WSU	174.7
9	Black River (East)	214	76.8	1,839.5	42,213	0.044	141,248	0.0006	90,606	USGS	176.3
12	Clinton River	268	77.5	2,062.8	78,113	0.026	159,880	0.0011	100,214	WSU	175.0
15	Huron River	233	73.9	2,257.4	110,454	0.020	166,740	0.0006	176,650	WSU	174.2
29	River Raisin	256	79.2	2,682.0	77,161	0.035	212,523	0.0006	223,699	USGS	174.2
	Minimum Value:	214	73.9	320	8,810	0.020	24,179	0.0006			
	Average Value:	274	<i>T.TT</i>	1,429	47,947	0.035	110,787	0.0007			
	Maximum Value:	530	81.5	2,682	110,454	0.057	212,523	0.0011			
	Area Weighted:	254	77.5	11,433	383,577	Totals: Lake Erie Watershed CN	itershed CN	0.0007			

Table 11. Watershed Curve Numbers, Annual Runoff, and Slopes of Eight Rivers Located Within the Lake Erie Watershed

1. Mean basin precipitation for the Lake St. Clair watershed is 855.3 millimeters; Basis: Hunter et al. (2015), period of record 1900 to 2014.

2. Mean precipitation data from the Lake St. Clair watershed incorporates the Belle River (3), Black River-East (6), Clinton River (12), and Pine River (27).

3. Mean basin precipitation for the Lake Erie watershed is 890.4 millimeters; Basis: Hunter et al. (2015), period of record 1900 to 2014.

4. Mean basin temperature for the Lake St. Clair watershed is 8.53 °C; Basis: Hunter et al. (2015), period of record 1948 to 2014.

5. Mean basin temperature for the Lake Erie watershed is 9.30 °C; Basis: Hunter et al. (2015), period of record 1948 to 2014.

Table 12. Watershed Curve Numbers, Annual Runoff, and Slopes for Five Sub-Watersheds of the Au Sable River (2), Boardman River (9), Grand River (14A), Huron River (15), and S. Joseph River (34A)

			Lake Erie Waters	Lake Erie Watershed Rivers: Curve Number Basis	e Number Basis			River Slop	River Slope Calculation	
	Annual							Slope: River		
	Watershed	Watershed	CN Watershed		Average Area of			Length		Receiving Water
	Runoff	Curve Number	Area	Number of	CN Polygons	Polygon	River Slope	Evaluated	Slope Method	Elevation
Dam and Corresponding River	(mm/year)	(CN)	(kilometers ²)	CN Polygons	(kilometers ²)	Area_CN	(m/m)	(meters)	Basis	(meters)
2A. Mio Dam, Au Sable River	323	51.7	3,328.1	98,536	0.034	172,127	0.0007	64,236	WSU	293.6
9A. Brown Bridge Dam, Boardman	460	53.3	395.7	7,770	0.051	21,111	0.0015	7,696	WSU	242.7
14A. Weber Dam, Grand River	252	76.0	7,441.3	301,779	0.025	573,304	0.0004	182,121	WSU	208.6
15A. Ford Dam, Huron River	279	73.0	2,085.2	104,723	0.020	152,233	0.0006	116,215	WSU	208.6
34A. Riley Dam, St. Joseph River	309	75.4	1,356.7	33,437	0.041	102,356	0.0008	55,040	WSU	265.8
Minimum Value:	252	51.7	396	7,770	0.020	21,111	0.0004			
Average Value:	325	65.9	2,921	109,249	0.034	204,226	0.0008			
Maximum Value:	460	76.0	7,441	301,779	0.051	573,304	0.0015			

The watershed curve numbers presented in Table 8, Table 9, Table 10, Table 11, and Table 12 represent the portion of the watershed located within the State of Michigan. Fifty four of the 60 watersheds (and all five sub-watersheds) are located entirely within the State of Michigan; exceptions include the River Raisin (29) and the St. Joseph River (34) located in the Lower Peninsula of Michigan, and the Black River (40), Menominee River (50), Montreal River (51), Ontonagon River (53), and Presque Isle River (56) located in the Upper Peninsula of Michigan. With respect to the 60 rivers and five sub-watersheds that were evaluated in this research, the number of polygons in each watershed, the average area of each polygon, and the area weighted watershed curve number are presented in Table 8, Table 9, Table 10, Table 11, and Table 12. In conjunction with the calculation of the watershed CNs, this research utilized the percentage of the watershed covered in upland wetlands, aquatic wetlands, reservoirs, and surface water (rivers and lakes) in the regression analysis discussed in Chapter 4.

3.6 Mean Basin Precipitation and Temperature

Mean basin precipitation and temperature for the watershed of each Great Lake was compiled by the NOAA Great Lakes Environmental Research Laboratory (GLERL, 2020) utilizing the methodology developed by Hunter TS et al. (2015). The mean basin precipitation and temperature for the Lake Superior watershed are 759 millimeters/year (1900-2014) and 3.1°C (1948-2014), respectively. The mean basin precipitation and temperature for the Lake Michigan watershed are 807 millimeters/year (1900-2014), respectively. The mean basin precipitation and temperature for the Lake Michigan watershed are 807 millimeters/year (1900-2014) and 6.6°C (1948-2014), respectively. The mean basin precipitation and temperature for the Michigan watershed are 807 millimeters/year (1900-2014) and 6.6°C (1948-2014), respectively.

Lake Huron watershed are 810 millimeters/year (1900-2014) and 7.0°C (1948-2014), respectively.

NOAA GLERL separates the Lake Erie watershed into two sub-watersheds, Lake St. Clair and Lake Erie. The Lake St. Clair watershed includes the discharge of four rivers, Belle River (3), Black River-East (6), Clinton River (12), and Pine River (27) and the four remaining rivers discharge into the Lake Erie watershed (see Tables 5 and 11). With respect to the Lake St. Clair watershed, the mean basin precipitation and temperature are 855 millimeters/year (1900-2014) and 8.53°C (1948-2014), respectively. With respect to the Lake Erie watershed, the mean basin precipitation and temperature are 890 millimeters/year (1900-2014) and 9.3°C (1948-2014), respectively.

3.7 Radiometric Dating of Sediment Cores, Five Reservoirs

This research included re-evaluation of reservoir sediment accumulation rates based on radiometric dating using ¹³⁷Cs and ²¹⁰Pb for five reservoirs that are sub-watersheds of the Au Sable River (2), Boardman River (9), Grand River (14), Huron River (15), and St. Joseph River (34). Vibracore sediment cores were collected for radiometric testing using a 345 pound vibracore unit that operates at 14,000 vibrations per minute (see Figure 10).

Figure 10. Photograph of the Vibracore Sampling Equipment Used to Collect 4-inch Sediment Cores for Radiometric Dating (GLEC, 2011)

Radiometric testing of sediment cores to determine reservoir sedimentation rates

was completed at the following dams (Wayne State University, 2017):

- Mio Dam (2A), Au Sable River
- Brown Bridge Dam (9A), Boardman River
- Webber Dam (14A), Grand River
- Ford Dam (15A), Huron River
- Riley Dam (34A), St. Joseph River

With respect to this study, the depositional rates of sediment in manmade reservoirs were determined utilizing short-lived radionuclides, ²¹⁰Pb and ¹³⁷Cs, derived primarily from natural and anthropogenic (nuclear weapons testing) sources, respectively (Wayne State University, 2017). The presence of ¹³⁷Cs and ²¹⁰Pb in sediments is due to atmospheric deposition (Alighalehbabakhani et al, 2017a; Alighalehbabakhani et al,

2017b; Kumar A et al, 2016; Jweda J and Baskaran M, 2011; Baskaran et al, 2015; Mabit et al, 2013; and Mabit et al., 2014).

Naturally occurring atmospheric ²¹⁰Pb is constantly released from the decay of ²²²Rn within the ²³⁸U decay series (²³⁸U \rightarrow ...²²⁶Ra \rightarrow ²²²Rn \rightarrow ...²¹⁰Pb); ²²²Rn diffuses primarily from terrestrial rocks and is released into the atmosphere where it undergoes radioactive decay to ²¹⁰Pb (Baskaran M and Naidu AS, 1995; Baskaran M et al, 2015). Precipitation removes atmospheric ²¹⁰Pb within a time scale of approximately 2-weeks and the ²¹⁰Pb is subsequently deposited onto lakes and reservoirs where it is removed from the water column via adsorption on to suspended particulate matter (Jweda J and Baskaran M, 2011; Baskaran et al, 2014; Sanchez-Cabeza JA and Ruiz-Fernandez JC, 2012). The half-life of ²¹⁰Pb is 22.3 years and this radiometric testing method is effective in dating sediments that have been deposited within the past 120 years (approximately five half-lives).

Because a number of factors can influence the vertical profile of ²¹⁰Pb in a sediment core such as erosion/redeposition and bioturbation of sediments, a second line of evidence is typically used to validate the ²¹⁰Pb-based radiometric dating such as ¹³⁷Cs (Baskaran et al. 2014; Mabit et al. 2014). In contrast to ²¹⁰Pb which is naturally occurring, the presence of ¹³⁷Cs is anthropogenic and was mainly introduced into the atmosphere beginning in 1952 as a result of global thermonuclear atmospheric testing (Baskaran et al. 2014; Mabit et al. 2014). The depositional process of ¹³⁷Cs is similar to that of ²¹⁰Pb; however, there is an important difference. Because the deposition of ¹³⁷Cs peaked in approximately 1963 in conjunction with the peak in worldwide atmospheric thermonuclear

testing, this peak provides a marker in a sediment core where the rate of subsequent sediment deposition can be estimated and is the basis for measuring sediment accumulation rates (Baskaran et al, 2011; Mabit et al, 2013). In addition, a second ¹³⁷Cs peak is sometimes measured in sediment cores that corresponds to the initiation of atmospheric thermonuclear testing during 1952 (Baskaran et al, 2014; Mabit et al., 2013). Since 1963, atmospheric ¹³⁷Cs has steadily declined. Although the 1986 Chernobyl nuclear accident resulted in a measurable increase of ¹³⁷Cs in the atmosphere, this was negligible compared to the ¹³⁷Cs derived from global fallout resulting from the peak atmospheric thermonuclear testing during 1963 (Jweda J and Baskaran M, 2011).

During 2010 and 2011, vibracore sediment coring was conducted at Mio Dam (2A; May 2011), Brown Bridge Dam (9A; October 2010); Webber Dam (14A; July 2010), Ford Lake Dam (15A; December 2011), and Riley Dam (34A; July 2010). The sediment cores were subsequently frozen and cut into one-centimeter-thick slices for ¹³⁷Cs and ²¹⁰Pb radiometric testing (Wayne State University, 2017). Sample processing and radiometric testing procedures as well as the models used to interpret the sediment accumulation rates are described in detail in the following publications: Baskaran et al. (2015); Kumar et al. (2016); Alighalehbabakhani et al (2017a); and, Alighalehbabakhani et al (2017b). The radiometric data and graphs of cumulative mass depth were published in a report that was prepared for the USACE Detroit District and titled *Sediment Yield and Dam Capacity in the Great Lakes Watershed* (Wayne State University, 2017)

In conjunction with this research, Dr. Mark Baskaran, Wayne State University reevaluated the ¹³⁷Cs and ²¹⁰Pb radiometric data for all sediment cores in all five reservoirs utilized in this research. With respect to the ¹³⁷Cs radiometric data, a sediment core was selected to recalculate annual reservoir sediment delivery to the reservoir if there was good definition of the 1963 ¹³⁷Cs peak. With respect to the ²¹⁰Pb cumulative mass depth, a sediment core was selected to recalculate annual sediment delivery to the reservoir if the plotted radiometric data was linear. An example of a sediment core that was selected based on the characteristics listed above is shown in Figure 11 (Sediment Core RD6, Riley Dam, St. Joseph River). Radiometric data selected for re-evaluation of the reservoir sedimentation rate is highlighted in green tables presented in Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16.

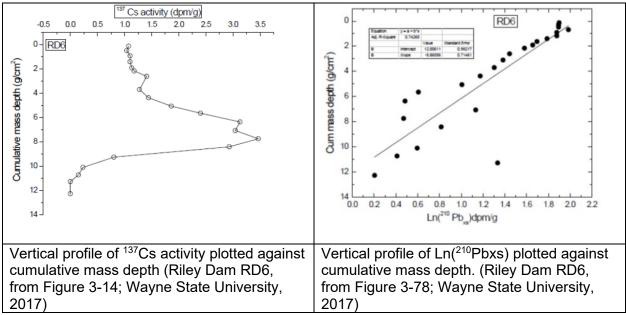
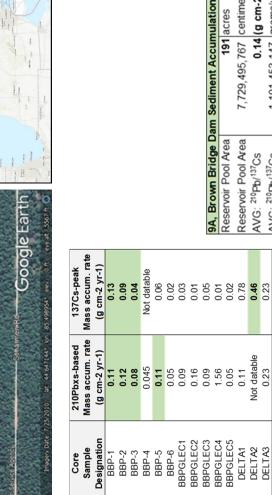


Figure 11. Radiometric Data, Sediment Core RD6, Riley Dam (34A), St. Joseph River

	Watershed Location Map
MIG-1	ere of the second
Single and the second sec	MIO-2 MIO-2 2 4 1 1 2 4 6 1 1 3 1 2 3 4 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1
MIO-10	Image USDA Farm Service Agency
MIO-11 MIQ-6 MIO-5 MIO-5 MIO-7 MIO-9	
MIO-11	


9,496 metric tonnes	9,496	AVG: ²¹⁰ Pb/ ¹³⁷ Cs	3askaran, WSU	Selected Value, M Baskaran, WSU		
grams/year	9,496,150,938 grams/year	AVG: ²¹⁰ Pb/ ¹³⁷ Cs	0.78	0.23	Average All Values:	
0.36 (g cm-2 yr-1)	0.3	AVG: "Pb/"Cs	1.85	Not datable	MI011	
centinineters	20,149,120,932 Centimeters	RESERVOIL FOOL ALEA	0.11	0.2	MIO10	
action of the second			1.47	Not datable	MI08	
661 acres	ee line in the second se	Reservoir Pool Area	Not datable	Not datable	MI07	
Data	Int Accumulation I	20 Mic Dam Sediment Accumulation Pate	0.36	0.35	MI06	
			Not datable	Not datable	MI05	
			Not datable	Not datable	MI04	
			Not datable	Not datable	MI03	
			0.12	0.17	MI02	
			Not datable	0.19	MI01	
			(g cm-2 yr-1)	(g cm-2 yr-1)	Designation	
			Mass accum. rate Mass accum. rate	Mass accum. rate	Sample	
			137Cs-peak	210Pbxs-based	Core	

			Water	Core
Sample			Depth	Length
Designation	Latitude	Longitude	(meters)	(cm)
MIO-1	44.65972	-84.13607	7.3	76.2
MIO-2	44.65391	-84.15247	14.7	127.0
MIO-3	44.66897	-84.16369	3.9	45.7
MIO-4	44.66254	-84.17223	6.2	50.8
MIO-5	44.6728	-84.18703	1.5	33.0
MIO-6	44.67221	-84.20005	V	91.4
MIO-7	44.67086	-84.18803	8.0	25.4
MIO-8	44.67151	-84.19457	v	68.6
MIO-9	44.66913	-84.19472	1.4	30.5
MIO-10	44.66618	-84.18114	3.1	0.99
MIO-11	44.67358	-84.20537	3.0	132.1
		Figure	Figure 12. Mio Dam	Mio Da

Figure 12. Mio Dam (2A) Estimated Sediment Accumulation Rate, Au Sable River

9,496 metric tonnes/year

									Jam Sediment Ac	Area 191 acres	Area 7,729,495,767 centimeters ²	Cs 0.14 (a cm-2 vr-1)		US 1,101,403,147 grams/year	Cs 1,101 metric tonnes/year	Figure 13. Brown Bridge Dam (9A) Estimated Sediment Accumulation Rate, Boardman River
									9A, Brown Bri	Reservoir Pool Area	Reservoir Pool Area	AVG: 210Pb/137Cs	AVIO: 210m. 1370-	AVG PD/	AVG: 210Pb/137Cs	nulation Rate
137Cs-peak Mass accum. rate (g cm-2 yr-1)	0.13	60.0	Not datable	0.06	0.0	0.03	0.01	0.05	0.01	0.02	0.78	0.46	0.23	0.15	Baskaran, WSU	ment Accum
210Pbxs-based Mass accum. rate (g cm-2 yr-1)	0.11	0.08	0.045	0.11	0.05	0.09	0.16	0.09	1.56	0.05	0.11	Not datable	0.23	0.22	Selected Value, M Baskaran, WSU	timated Sedi
Core Sample Designation	BBP-1	BBP-2 BBD-3	BRP-4	BBP-5	BBP-6	BBPGLEC1	BBPGLEC2	BBPGLEC3	BBPGLEC4	BBPGLEC5	DELTA1	DELTA2	DELTA3	Average All Values:		Dam (9A) Es
Core Length (rm)	25	76	72	56	33	51	44	36	56	53	45	107	117	59	}	Bridge
Water Depth (meters)	1.5	2.6	4.5	4.8	4.4	7.8	4.4	3.1	5.9	2.1	3.8	0.9	0.7	0.4		Brown
onditude	-85.49564	-85.49317	44.65122 -85.49909	-85.4996	-85.50233	-85.50844	-85.50781	-85.50542	-85.50591	-85.49873	-85.50004	-85.49097	-85.49174	-85 49224		jure 13.
l atitude	44.65014	44.65068 -85.49317	44.65122	44.64842	44.64716	44.6463	44.64385	44.64465	44.64687	44.64894	44.65032	44.65107	44.65096	44.65022		Fic
Sample Depth Destructe (meters)	BBPGLEC5	BBP1	BBP2	BBP3	BBP4	BBP5	BBP6	BBPGLEC1	BBPGLEC2	BBPGLEC3 44.64894	BBPGLEC4	Delta 1	Delta2	Delta3		

60

Image: state in the state	14A, Weber Dam Estimated Sediment Accumulation Rate Reservoir Pool Area 660 acres 660 AVG: ²⁰⁰ Pb/ ¹³⁷ Cs 0.73 AVG: ²⁰⁰ Pb/ ¹³⁷ Cs 0.73 AVG: ²⁰¹ Pb/ ¹³⁷ Cs 19,497,754,243
AL BOBDZER ERV. D	137Cs-peak Mass accum. rate (g cm-2 yr-1) 0.65 0.93 0.03 0.63 0.63 0.63 0.63 0.63 0.63 0.6
D-1 D-1 RHk.BWd P311 WD-12 B3010 Bt 42.90066* bn	210Pbxs-based Mass accum. rate (g cm-2 yr-1) 0.64 0.70 0.12 0.12 0.12 0.12 0.37 0.11 Not datable 0.46
WD-2 WD-5 WD-6 WD-6 MD-6	Core Sample Besignation WD-1 WD-2 WD-4 WD-5 WD-6 WD-11 WD-11 WD-112
MD-3	Core Length (cm) 106.7 180.3 77.5 34.3 114.3 91.4 63.5
Chestnut Ln	Water Water Depth (meters) 4.4 4.1 2.5 1.0 2.8 2.8 0.9 0.9 1.3 1.3
	Longitude -84.90424 -84.90795 -84.91759 -84.91759 -84.90719 -84.90719
Statey Rd	Latitude Latitude 42.95261 42.9479 42.94584 42.93842 42.93842 42.933526 42.933526
	Sample Designation WD-1 WD-2 WD-3 WD-3 WD-4 WD-6 WD-11

 WD-12
 42.93294
 -84.90017
 3.0
 59.7
 Average All values:
 U.M.
 U.M.
 U.M.
 U.M.
 U.M.

 WD-12
 42.93294
 -84.90017
 3.0
 59.7
 Average All values:
 Selected Value, M Baskaran, WSU
 Ave: 200 b0/13°Cs
 1

 Figure 14.
 Webber Dam (14A) Estimated Sediment Accumulation Rate, Grand River

19,498 metric tonnes/year

Watershed Location Map	Reservoir Pool Area 987 Reservoir Pool Area 987 AVG: 2 ¹⁰ Pb/ ¹³⁷ Cs 39,942,472,889 AVG: 2 ¹⁰ Pb/ ¹³⁷ Cs 11,583,317,138 AVG: 2 ¹⁰ Pb/ ¹³⁷ Cs 11,583,317,138 AVG: 2 ¹⁰ Pb/ ¹³⁷ Cs 11,583,317,138
an and a second a se	15A, Ford Dam Sedir Reservoir Pool Area Reservoir Pool Area AVG: 210ph/13 ⁷ Cs AVG: 210ph/13 ⁷ Cs
ter de la consection de	137Cs-peak Mass accum. rate (g cm-2 yr-1) Not datable Not datable 0.38 0.22 0.27 Not datable 0.29 0.29 0.29 0.29
	210Pbxs-based 137Cs-pea Mass accum. rate Mass accum. rate Mass accum. rate Mass accum. rate Mass accum. rate Mass accum. rate Not datable Not datable Not datable Not datable Not datable Not datable Not datable Not datable 1.08 0.38 0.39 0.22 0.37 0.27 Not datable Not datable Not datable Not datable 1.08 0.38 0.39 0.27 Not datable Not datable 1.08 0.38 0.39 0.22 Not datable Not datable 0.39 0.27 Not datable Not datable
Dagery Date: 7/25/2000	Core Sample Designation FLD4 FLD4 FLD5 FLD5 FLD5 FLD3 FLD13 FLD13 FLD13 FLD13 FLD13 FLD13
States Re- Big Pine Dr. Big Pine Dr. Big Pine States Re- Big Pine Dr. Big Pine Dr.	Core Length (cm) 20 85 53 90 90 64
	Water Depth Depth 1.1
	Longitude -83.60585 -83.60531 -83.60678 -83.60678 -83.59466 -83.60646 -83.60499
ELD4	Latitude Latitude 42.22976 42.23498 42.23498 42.21539 42.21906 42.22965 42.23698
	Sample Designation FLD4 FLD4 FLD5 FLD3 FLD11 FLD11

Figure 15. Ford Dam (15A) Estimated Sediment Accumulation Rate, Huron River

Adtershed Location Map		244 Bilau Dan Estimated Cediment Accountilation Date	344, Kiey Dani Esumateu Seument Accumulation Kate Reservoir Pool Area 518 acres	20,962,716,2		AVG: ²¹⁰ Pb/ ¹³⁷ Cs 4,472,046,137 grams/year	4,472	Of Least Dines
dige Earth			Rese	Rest	AVG	AVG	AVG	
	0.29	0.06	0.13	0.16	0.22	0.17	Selected Value, M Baskaran, WSU	
A 210 Pbvs-based a 200 g cm-2 yr-1) (g cm-2	0.28	0.19	0.16	0.12	0.18	0.19	Selected Value, N	
Core Sample	КD-8 КD-8 КD-6	RD-7	RD-8	RD-9	RD-13	Average All Values:	0	
Core Length	51	8 2	27	41	46	76	71	
		2.1	1.2	1.7	2.1	1.6	2.4	
Latitude Londitude (meters)	-85.19953 -85.20154	-85.17745	-85.17814	-85.17617	-85.17329	-85.16958	-85.18655	
Latitude L	42.04436 42.04616	42.05231	42.05526	42.05069	42.05378	42.05606	42.04707	
Sample Designation		2 G2	RD-7	RD-8	RD-9	RD-10	RD-13	

The ²¹⁰Pbxs-based mass accumulation rate (grams centimeter⁻² per year⁻¹) and ¹³⁷Cs-peak mass accumulation rate (grams centimeter⁻² year⁻¹) were averaged and utilized to recalculate the sediment accumulation rate for each of the five reservoirs (see Figures 12-16). The annual reservoir sedimentation accumulation rate is calculated by multiplying the average ¹³⁷Cs and ²¹⁰Pb mass accumulation rate (grams centimeter⁻² year⁻¹) times the reservoir pool surface area (square centimmeters) as reported by Michigan Department of Environment, Great Lakes, and Energy (EGLE) reservoir database (EGLE, 2020). The recalculated annual sediment accumulation rate for each reservoir is summarized on Table 13.

 Table 13. Comparison of Reservoir Sedimentation Rates of Five Sub-Watersheds Using

 ¹³⁷Cs and ²¹⁰Pb Radiometric Dating

	Wayne State University (2017)	Alighalehbabakhani et al (2017a)	Annual Sediment Accumulation Rate, Revised
Dam	metric tonnes/yr	metric tonnes/yr	metric tonnes/yr
2A, Mio Dam, Au Sable River	20,000	5,000	9,500
9A, Brown Bridge Dam: Boardman River	2,000	2,000	1,100
15A, Ford Lake Dam, Huron River	13,000	7,000	12,000
14A, Webber Dam: Grand River	18,000	16,000	19,000
34A, Riley Dam: St. Joseph River	4,000	4,000	4,500

Comparison of the re-calculated reservoir sedimentation accumulation rates for these five reservoirs to prior published results (Alighalehbabakhani et al, 2017a; Wayne State University, 2017) reveals that all three rates are very similar with respect to Webber Dam (14A, Grand River) and Riley Dam (34A, St. Joseph River), and within a factor of two with respect to Mio Dam (2A, Au Sable River), Brown Bridge Dam (9A, Boardman River), and Ford Lake Dam (15A, Huron River). With respect to this research, the average annual rate of sediment accumulation within these five reservoirs served as the dependent variable in the subsequent regression analysis discussed in Chapter 4.

3.8 USACE-Detroit District Maintenance Dredging of Federal Navigation Channels and Harbors

In conjunction with this research, the USACE-Detroit District provided extensive harbor and navigation channel maintenance dredging data for 30 harbors located in Michigan. Of the 60 rivers included in this research, USACE maintained navigation channels and harbors are located at the outlets of 30 of these rivers (see Figure 4). The USACE-Detroit District maintains the navigation channels subject to the Rivers & Harbors Act of 1899 (USACE, 2010b). The horizontal and vertical boundaries of these navigation channels are defined and changes are approved by Congress via periodic amendments to the Rivers & Harbors Act of 1899 (USACE, 2010b). These federal navigation channels represent defined boundaries both laterally and vertically (USACE, 2010b).

The USACE-Detroit District performs annual Condition Assessments for each navigation channel and Harbor. The USACE Condition Assessments involve bathymetric surveys to estimate the amount of sediment that has accumulated in the navigation channel in comparison to the prior year, and that requires maintenance dredging. In addition, the USACE-Detroit District updates Harbor Fact Sheets each year. The Harbor Fact Sheets (USACE, 2020a) provide data regarding the history of the navigation channel, a summary of Rivers and Harbors Authorizations, river and navigation channel features, stakeholders, transportation importance and consequences of not maintaining the navigation channel, as well as the maintenance dredging project requirements and a dredging forecast (USACE, 2020a).

Excessive sedimentation within the USACE navigation channels and harbors can limit shipping (e.g. light loading of freighters) and is an ongoing issue requiring periodic condition assessments (bathymetric surveys) and maintenance dredging to maintain the project depths of the harbors, turning basins, and navigation channels. The USACE Detroit District, under the authority of the Rivers and Harbors Act of 1899, exercises jurisdiction over these federal waterways, in this case to maintain the project depths via periodic maintenance dredging of the navigational channels to allow commercial and recreational boat traffic ("navigational servitude").

Examples of sediment accumulation above the project depth of federal navigation channels located at the St. Joseph River (34) navigation channel and at Holland Harbor (Macatawa River, 8) are shown on Figure 17 and Figure 18, respectively. The bathymetric survey measurements shown in Figure 17 and Figure 18 represent depth to sediment relative to Low Water Datum. Low Water Datum (and Ordinary High-Water Mark; OHWM) are USACE jurisdictional benchmarks for administering its regulatory program in navigable waterways under Section 10 of the Rivers and Harbors Act and Section 404 of the Clean Water Act (USACE, 2021b). With respect to Holland Harbor, the project depths are 24 feet and 21 feet in the segments of the navigation channel that are shown Figure 18. Water depths to sediment relative to LWD that are deeper than the project depth are shown in blue, and the water depths to sediment that are shallower than the project depth are shown in red and are subject to future USACE-Detroit District maintenance dredging.

66

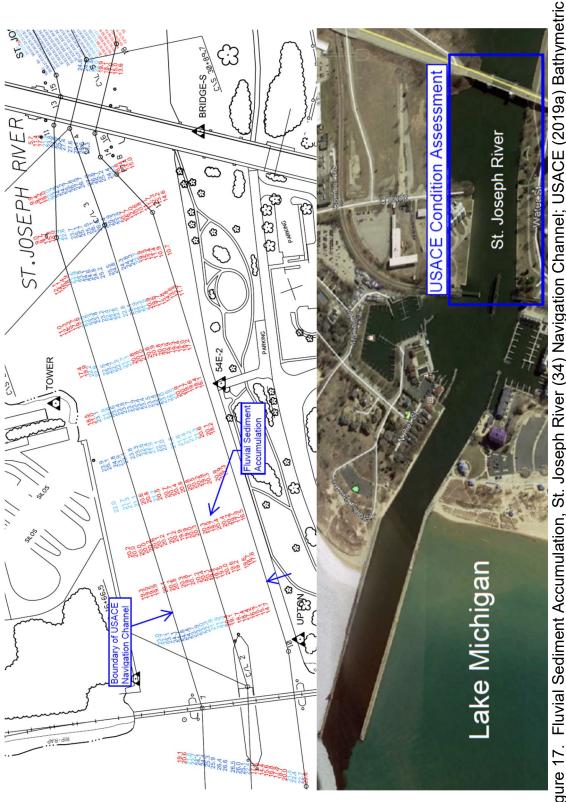
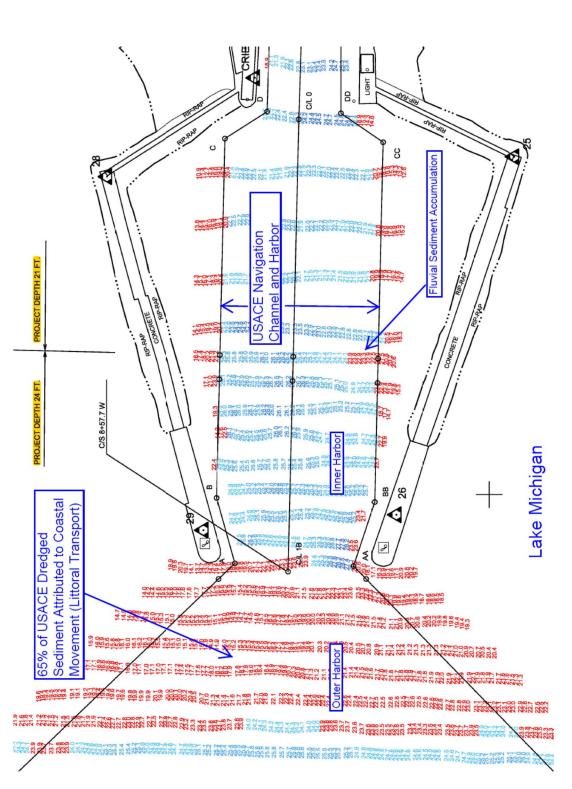



Figure 17. Fluvial Sediment Accumulation, St. Joseph River (34) Navigation Channel; USACE (2019a) Bathymetric Survey; Google Earth Pro (2021)

Detailed USACE dredging records of these 30 harbors and navigation channels typically extend back to the early- to mid-1960's and provide important data regarding the rate of sediment accumulation in these federally defined navigation channels over time (USACE, 2021c). Because maintenance dredging can only be conducted within the defined limits of a federal navigation channel (USACE, 2010b), the USACE-Detroit District's dredging data was used in this research to estimate the average annual volume of sediment that has accumulated in the federal navigation channel since federal maintenance dredging commenced.

With respect to USACE maintenance dredging, two types of sediment are removed, littoral sediment originating from coastal movement of sediment outside of the Harbor and navigation channel, and fluvial sediment originating from the river. With respect to USACE dredging data, reference to an Outer Harbor dredging event refers maintenance dredging in front of the Harbor inlet. Inner Harbor maintenance dredging is predominantly fluvial sediment that is transported by the river system (see Figure 17).

Littoral sediment includes sediment transported by longshore currents originating from the lake shoreline and lake bed sediment resuspended by waves. Because most USACE maintenance dredging projects have historically not separated Outer Harbor (littoral sediment) from Inner Harbor (fluvial sediment) sediment, caution is required when evaluating USACE dredging data (USACE, 2010a). An example of littoral sediment accumulation in front of the harbor inlet at Holland Harbor (Macatawa River, 8) is shown in Figure 18; as shown in Figure 19, the effect of longshore current is evident

Figure 19. Littoral Sediment Transport, Holland Harbor, Macatawa River (8) (Google Earth Pro, 2021)

with sediment accumulating on the north side and in front of the Harbor inlet, and is depleted on the southside of the Harbor inlet.

The total number of maintenance dredging events and the volume of sediment dredged by the USACE-Detroit District from each of the 30 Harbors and navigation channels are summarized on Table 14. A total of 867 USACE maintenance dredging events encompassing 65,424,279 yard³ of dredged sediment were compiled in this research. With respect to these 30 Harbors and navigation channels, the number of maintenance dredging varies from four (Black River-East, 6; navigation channel) to 92 (Grand Haven Harbor; Grand River, 14). A number of Harbors and navigation channels are dredged on an annual or near annual basis by the USACE Detroit District, examples include: Holland Harbor, Macatawa River (8); Grand Haven Harbor, Grand River (14); Monroe Harbor, River Raisin (29); Rouge River navigation channel (31); Saginaw River navigation channel (32), and Ontonagon River Harbor (53). Of the 65,424,279 yard³ that have been dredged from these 30 Harbors and navigation channels, 24,285,102 yard³ were dredged from Saginaw River navigation channel. The Saginaw River watershed is the largest in Michigan (15,882 square kilometers), and due to commercial importance and the high cost of maintenance dredging, this watershed is one of the most studied (USACE, 1999, 2000, 2001, and 2012; Ouyang D and Bartholic J, 1997).

Each of the 30 Harbors and associated navigation channels were evaluated by both USACE-Detroit District and Wayne State University to determine if the associated USACE-Detroit District dredging data represents either primarily fluvial or littoral sediment, or a combination of both. Other Harbor and river specific considerations were also evaluated to determine whether or not a particular Harbor was either retained or excluded from this research of fluvial sediment delivery to the river outlet. Of the 30 Harbors evaluated, 12 Harbors were retained and 18 Harbors were excluded, the basis of the decision to retain or exclude a particular Harbor is presented on Table 15. Retained USACE harbors and navigation channels are highlighted in green in Table 15.

The percentage of dredged sediment attributed to fluvial and littoral sediment is shown on Table 15. In most instances, Harbors were retained in this research if 80-90% of the dredged sediment was determined to be fluvial based on the location of USACE maintenance dredging. Exceptions are discussed in the following text.

For three Harbors, the USACE-Detroit District has recently begun to separate maintenance dredging projects into Outer Harbor dredging (primarily littoral sediment) and Inner Harbor dredging (primarily fluvial sediment) and for this reason, these Harbors were retained in this research although the percent of littoral sediment ranged from 65 to 80%. Beginning in approximately 2012, the USACE Detroit District estimated the percentage of sediment attributed to fluvial and littoral processes based on analysis of dredging data for: Holland Harbor (Macatawa River, 8); Grand Haven Harbor (Grand River, 14), and St. Joseph River (34) Navigation Channel. The basis of the separation of Outer Harbor and Inner Harbor dredging volumes are contained in the individual USACE-Detroit District Harbor Fact Sheet dredging forecast, and is based on the past 10 to 20 years of maintenance dredging projects (USACE, 2020a).

30 Michigan Harbors
30
el Dredging, 3
Channe
Navigation
y of USACE Naviga
Summary o
Table 14.

			USACE Total Dredged From 1st	USACE	USACE	USACE				Number of
MDEQ Watershed Reference			Recorded Dredge Event to 2016	Total Dredged 2017	Total Dredged 2018	Total Dredged 2019	Most Recent Authorization, Rivers and Harbors Act of	First USACE Dredge	Last USACE Dredge	Dredging Events Through
Number	River	USACE Harbor	(yards ³)	(yard ³)	(yard ³)	(yard ³)	1899	Event	Event	2019
1	Au Gres River	Point Lookout Harbor	552,134				March 2, 1945	1971	2014	10
2	Au Sable River	Au Sable Harbor	434,163		32,100		March 2, 1945	1965	2018	16
4	Betsie River	Frankfort Harbor	809,632		49,956		October 27, 1965	1964	2018	23
9	Black River - East	Black River	232,298				April 3, 1970	1975	2014	4
7	Black River - West	South Haven Harbor	754,961		52,514		August 30, 1935	1963	2018	23
∞	Macatawa River	Holland Harbor	3,569,000	34,000	82,751	41,180	September 3, 1954	1962	2019	76
10	Pine River	Charlevoix Harbor	100,507				March 24, 1977	1964	1984	∞
11	Cheboygan River	Cheboygan Harbor	177,755				May 17, 1950	1964	2015	7
12	Clinton River	Clinton River	425,515				August 5, 1886	1965	2009	10
14	Grand River	Grand Haven Harbor	4,541,654	75,244	66,500	70,620	June 23, 1886	1963	2019	92
17	Kalamazoo River	Saugatuck Harbor	906,477			34,000	June 25, 1910	1964	2019	30
20	Manistee River	Manistee Harbor	1,713,920		45,263		July 14, 1960	1964	2016	39
22	Muskegon River	Muskegon Harbor	2,438,816				October 23, 1962	1964	2017	36
24	Pentwater River	Pentwater Harbor	975,280			20,000	March 2, 1907	1963	2019	47
25	Pere Marquette River		2,204,349			29,700	December 31, 1970		2019	30
26	Pigeon River	Caseville Harbor	205,122		22,800		October 23, 1962	1964	2018	10
29	River Raisin	Monroe Harbor	7,021,986		49,500		July 3, 1930	1963	2018	48
31	Rouge River	Rouge River	4,582,940		66,500		October 23, 1962		2018	43
32	Saginaw River	Saginaw River	24,285,102	125,000	145,004		10/23/1962, 10/27/1965		2018	86
33	Sebewaing River	Sebewaing River	502,505		•	•	June 3, 1896	1966	2015	б
34	St. Joseph River	St. Joseph River	3,811,635	35,005	28,828	37,000	July 3, 1958	1963	2019	79
36	Thunder Bay River	Alpena Harbor	247,338	27,382			October 27, 1965	1963	2017	10
37	White River		711,179		26,700		March 2, 1907	1964	2018	21
40	Black River (Gogebic)		93,287				March 2, 1945	1966	2009	14
42	Cedar River	Cedar River Harbor	106,324				October 27, 1965	1999	2013	ς
45	Dead River	Presque Isle Harbor	93,580				July 14, 1960	1971	2016	4
49	Manistique River	Manistique Harbor	177,787				May 17, 1950	1963	2016	9
50	Menominee River	Menominee Harbor	249,688				March 3, 1871	1961	2014	10
23	Ontonagon River	Ontonagon Harbor	2,751,390			142,321	August 26, 1937	1963	2019	51
55	Portage River	Keweenaw Waterway	747,955	31,170	26,189		August 30, 1935	1963	2018	13
		Total:	65,424,279	327,801	716,135	374,821			Total:	867

Ś
ysi
nal
ΓA
the
n
arbor from Further Anal
fro
oc
art
clude or Retain a Harbor
L
eta
Ч Ч
e e
pnlc
, XC
ment and Basis to Exclude o
. <u></u>
d Basi
I DC
t ar
len
stm
ent Adjustm
t A
len
din
Se
ิล
itto
USACE Litt
AC
NS
able 15. US
e
able-
-

USACE Littoral Dredged Sediment Adjustment, Basis to Exlude or Retain in Analysis 0% Fluvial Sediment	-	oote, Mio, Alcona Dams Excluded	Betained	Excluded	CE Dredging Contracts Retained	Excluded	: Beach Excluded	Retained	SACE Dredging Contracts Retained	Excluded	Excluded	Excluded	Excluded	Excluded	Excluded	100% Fluvial Sediment, AVG 2003-2007 Dredging Contracts Retained				CE Dredging Contracts Retained	Excluded	Excluded	annel Excluded	Excluded	Excluded	_	Dredging Contracts Retained	5e. Bathymetric Analysis Retained	1
ดี		K Excluded, Multiple Large Dams: Foote, Mio, Alcona Dams 100% Littoral Sediment			65% Littoral Sediment, Basis USACE Dredging Contracts	% 90% Littoral Sediment	NA Excluded Due to Dam and Pocket Beach	% 10% Littoral Sediment	% 77.8% Littoral Sediment, Basis USACE Dredging Contracts	% 100% Littoral Sediment	% 90% Littoral Sediment	% 95% Littoral Sediment	% 95% Littoral Sediment		 Excluded, Ice Relief Channel 	0% 100% Fluvial Sediment, AVG 2003	0% 100% Fluvial Sediment			% 75% Littoral Sediment, Basis USACE Dredging Contracts		% 100% Littoral Sediment	Excluded, Bedrock Controlled Channel		 Excluded, Large Dam Failure 	0% 100% Fluvial: AVG 1963 - 1967 Dredging Contracts	0% 100% Fluvial, AVG 1968 and 1969 Dredging Contracts	25% 25% Littoral Sediment USACE 516e, Bathymetric Analysis	
Coastal Adjustment, Percent of Sediment t Attributed to Littoral Transport 9		1 80%		8 90%	5 65%	8 90%		2 10%	1 80%	6 100%	806 6	6 95%	5 95%	4 95%	7 NA					3 75%		7 100%	3 NA	4 90%	8 NA				
Dredged Minus Channel Deepening Adjustment Plus 2019 Backlog		466,701 873 166			4,032,335	105,078	209,376	564,282	5,005,111	944,356	1,852,669	2,410,266	995,285	2	230,017	7,525,976		24,		4,164,683		739,197	108,723		194,598	409,795	283,842	3,069,677	
December 2019 USACE Estimated Dredging Backlog (10-6-2020) 21,558	000173	10 360	~		85,505	4,571	9,621	138,767	146,681	3,879	17,558	36,337	5		2,095	154,196			123,718	19,291	274,837	1,318	15,436	17,230	65,046	211,308	12,754	110,770	
USACE Total Dredged Minus Channel Deepening Adjustment (if any) 611,501	100/110	466,263 812 806	257.148	807,475	3,946,830	100,507	199,755	425,515	4,858,430	940,477	1,835,111	2,373,929	995,280	2,277,353	227,922	7,371,780		24,	542,864	4,145,392	239,157	737,879	93,287	106,324	129,552	198,487	271,088	2,958,907	
Adjustment for Channel Deepening: Rivers and Harbors Act of 1899 Authorization no adjustment		no adjustment 1966 Dredge Event	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	1965 Dredge Event	no adjustment	1971 Dredge Event	no adjustment	no adjustment	1964 Dredge Event	1964, 1966 Dredge Events	no adjustment	no adjustment	1966 Dredge Event	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	no adjustment	
Adjust. for Channel Deepening (yard ³)		- 46 782		•	1	1	-		1	1		253,899	•	36,526	•	I	353,255	1,610,108	•	1	35,563	1	•	•		1	1	1	
USACE Harbor Point Lookout Harbor		Au Sable Harbor Frankfort Harbor	Black River	South Haven Harbor	Holland Harbor	Charlevoix Harbor	Cheboygan Harbor	Clinton River	Grand Haven Harbor	Saugatuck Harbor	Manistee Harbor	Muskegon Harbor	Pentwater Harbor	Ludington Harbor	Caseville Harbor	Monroe Harbor	Rouge River	Saginaw River	Sebewaing River	St. Joseph River	Alpena Harbor	White Lake Harbor	Black River Harbor	Cedar River Harbor	Presque Isle Harbor	Manistique Harbor	Menominee Harbor	Ontonagon Harbor	
River Au Gres River		Au Sable River Betsie River	Black River - Fast	Black River - West	Macatawa River	Pine River	Cheboygan River	Clinton River	Grand River	Kalamazoo River	Manistee River	Muskegon River	Pentwater River	Pere Marquette River	Pigeon River	River Raisin	Rouge River	Saginaw River	Sebewaing River	St. Joseph River	Thunder Bay River	White River	Black River (Gogebic)	Cedar River	Dead River	Manistique River	Menominee River	Ontonagon River	
Watershed Reference Number	•	4 5	t y	7	∞	10	11	12	14	17	20	22	24		26	29	31	32	33	34	36	37	40	42	45	49	50	53	

For example, at Holland Harbor (Macatawa River, 8; USACE, 2021c), the USACE-Detroit District has separated Outer Harbor and Inner Harbor dredging projects since 2012, and the USACE-Detroit District forecasts that the annual Outer Harbor maintenance dredging will average 35,000 yard³ (26,760 cubic meters) and Inner Harbor maintenance dredging within the federal navigation channel will range from 45,000 to 65,000 yard³ (34,400 to 49,700 cubic meters) every 2 to 4 years (USACE, 2021c). The percentage of annual maintenance dredging attributed to littoral sediment transport processes of 65% was calculated by dividing the annual Outer Harbor maintenance dredging forecast of 35,000 yard³ (26,760 cubic meters) by the sum of the geometric mean of the annual Inner Harbor maintenance dredging forecast (19,270 yard³ or 14,730 cubic meters) and the annual Outer Harbor maintenance dredging forecast (35,000 yard³ or 26,760 cubic meters). Using the same method, the percentage of dredged sediment attributed fluvial processes for the Grand Haven Harbor (Grand River, 14), and St. Joseph Harbor (St. Joseph River, 34) are estimated at 80% and 70%, respectively.

With respect to the Saginaw River (32) and Ontonagon River (53), USACE 516e studies were used to estimate the littoral component of dredged sediment (USACE, 2000 and 2010). With respect to the Saginaw River navigation channel, the USACE (1999 and 2000) prepared calibrated hydrodynamic and sediment transport models. The annual sediment volume deposited in the Saginaw River navigation channel was estimated using HEC-6 and MIKE 21 sediment transport models (USACE, 1999 and 2000). By comparing the predicted sediment deposition at the river outlet in Saginaw Bay to the 1982-1999 USACE dredging data from the portion of the USACE navigation channel located in Saginaw Bay (Outer Harbor), the USACE concluded that approximately 10% of the

dredged sediment is littoral and 90% of the sediment is fluvial sediment derived from the Saginaw River (USACE, 2000)

For Ontonagon Harbor (Ontonagon River, 53), the USACE-Detroit District completed a bathymetric analysis of several pairs of pre- and post-dredging events to estimate the littoral and fluvial components of the sediment removed during USACE maintenance dredging of the federal navigation channel (USACE, 2010a). The USACE (2010a) approach to the estimate fluvial and littoral components of dredged sediment consisted of generating a digital surface using a Triangular Irregular Network (TIN) and then calculating the volume between the surfaces in the area where fluvial sediment was deposited (USACE, 2010a). For several pairs of years, a post-dredging survey (Condition Assessment) was completed in the spring which established a baseline condition, and the pre-dredging survey that was taken the following spring was used to calculate fluvial sediment accumulation (USACE, 2010a), the difference in sediment volume was compared to the total amount of sediment dredged (fluvial and littoral). Using this method, the littoral and fluvial components of the dredged sediment were separated and estimated to be 25% and 75%, respectively (USACE, 2010a).

For three Harbors, the USACE's estimate of fluvial sediment delivery was based on a portion of the USACE dredging data that was determined be representative of fluvial sediment delivery, these include: Monroe Harbor, River Raisin (29; dredging contract years 2003 to 2007); Manistique Harbor, Manistique River (49; dredging contract years 1963-1967); and Menominee River, Menominee Harbor (50: dredging contract years 1968 and 1969). With respect to the 12 Harbors included in this research, the volume of sediment dredged from the initial dredging event or the most recent Rivers and Harbors Act of 1899 authorization through December 2019 was totaled. To account for sediment that has accumulated in the federal navigation channel but has not yet been removed, the estimated amount of USACE maintenance dredging backlog as of December 2019 (USACE, 2020b) within the navigation channel was added to the total amount of dredged sediment. The sediment backlog for each USACE-Detroit District navigation channel is determined on an annual basis during the conduct of Condition Assessments (bathymetric surveys; USACE, 2020a); examples of bathymetric surveys completed during Condition Assessments are shown on Figure 17 and Figure 18. To estimate the fluvial component of dredged sediment, the total amount of sediment dredged since the initial dredging event was adjusted to:

- remove the estimated littoral component of dredged sediment
- add in the current sediment backlog within the federal navigation channel based on the annual Condition Assessment (USACE, 2020b)
- and exclude dredged sediment that pre-dates an adjustment to the dimensions of the federal navigation channel (e.g. channel deepening) that was subject to Rivers & Harbors Act of 1899 authorization (USACE, 2010b).

A summary of the total volume of dredged sediment for each of these 12 Harbors are shown in Table 15. Table 15 also lists the adjustments for channel deepening subject to the Rivers and Harbors Act Authorization, adjustment for littoral component of dredged sediment, and the basis to exclude or retain a Harbor or navigation channel from further analysis.

3.8.1 USACE-Detroit District Dredging Forecasts and the Potential Impact of the Implementation of the USDA Conservation Reserve Program (CRP) and Sediment Best Management Practices During the Early 1990's

Review of average annual dredging volumes removed by the USACE since initiation of maintenance dredging in comparison to the USACE-Detroit District dredging forecasts (USACE, 2021c) revealed a marked decrease in the rate of sediment accumulation requiring maintenance dredging for 9 of the 12 Harbors and navigation channels that were selected for this research. Based on analysis of the USACE dredging data, the decrease in average annual dredging of the USACE Navigation Channels and Harbors appeared to occur during the early 1990's depending on the watershed. At the suggestion of the USACE-Detroit District, the potential impact of the U.S. Department of Agriculture's (USDA's) Conservation Reserve Program (CRP) and the State of Michigan's implementation of Non-Point Source Best Management Practices during the early 1990's were evaluated.

USDA Farm Service Agency's (FSA) Conservation Reserve Program is a voluntary program that contracts with agricultural producers so that environmentally sensitive agricultural land is not farmed or ranched, but instead devoted to conservation benefits; in return, USDA Farm Service Agency provides participants with rental payments and cost-share assistance, and contract duration is between 10 and 15 years (USDA, 2019). Across the United States, Conservation Reserve Program currently protects approximately 80,940 square kilometers of topsoil from erosion by reducing water runoff and sedimentation in rivers and lakes (USDA, 2021).

In each State, the area enrolled to the Conservation Reserve Program by County is updated on an annual basis and the enrollment data are available for the reporting years 1986-2019. In Michigan, the Conservation Reserve Program began in 1986 and 29.9 square kilometers were initially enrolled in the program. In 1993 and 1994, the area subject to the Conservation Reserve Program peaked at 1,342 square kilometers and has declined since (see Figure 20).

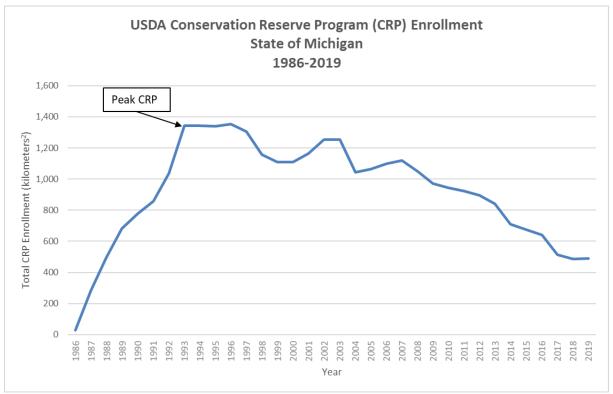


Figure 20. USDA (2021) Conservation Reserve Program Enrollment, State of Michigan, 1986-2019

In addition, during the 1990's, the State of Michigan initiated programs to foster control of Non-Point Source pollution, including preparing a series of Best Management

Practices to control sediment discharge to rivers and streams and were widely distributed to communities throughout Michigan (MDEQ, 1992 and 1998). Examples of Best Management Practices to minimize sediment discharge to rivers and streams include construction of riparian buffer strips, sedimentation basins, and check dams (MDEQ, 1992, 1998, 2017). The MDEQ sediment Best Management Practices guidance documents were developed and released following the publication of the MDEQ (1988) Nonpoint Pollution Assessment Report.

To further evaluate the potential impact of the Conservation Reserve Program enrollment as well as the implementation of sediment Best Management Practices within the State of Michigan to reduce sediment loading to rivers and streams, an assessment of the 4-year rolling average of annual dredged sediment was completed on three USACE Harbors and navigation channels. The following Harbors and navigation channels were evaluated: USACE Monroe Harbor, River Raisin (29); USACE Rouge River (31) Navigation Channel; and the USACE Saginaw River (32) Navigation Channel.

These watersheds were chosen based on a high frequency of USACE maintenance dredging events, a low estimate of the littoral component of the volume of sediment dredged, and with respect to the River Raisin (29) and the Saginaw River (32), a high percentage of the watershed containing agricultural land use (67% and 45%, see Appendices GG and JJ, respectively). The Rouge River was selected based a high frequency of maintenance dredging events, a low estimate of the littoral component of the volume of the dredged, and because this watershed has an active watershed

community group that promotes Non-Point Source Pollution, Best Management Practices (the Friends of the Rouge River).

Review of 4-year rolling averages of dredged sediment for Monroe Harbor (Figure 21), Rouge River Navigation Channel (Figure 22), and the Saginaw River Navigation Channel (Figure 23) reveals that the 1993 date of peak Conservation Reserve Program participation in Michigan appears to largely coincide with the decrease in the volume of dredged sediment for that particular navigation channel (River Raisin; 29; Saginaw River, 32). With respect to the Rouge River (31), a similar decrease in 4-year rolling average was observed and given the low percentage of agricultural land use (5%), this decrease may be due in part to implementation of Non-Point Source Pollution, Best Management Practices within the watershed.

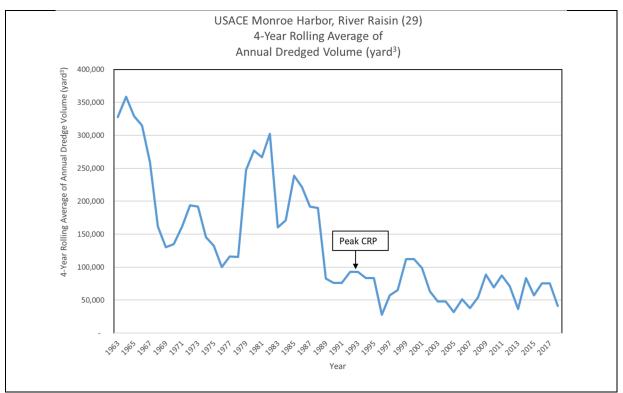


Figure 21. USACE Monroe Harbor, River Raisin (29), 4-Year Rolling Average of Annual Dredged Volume

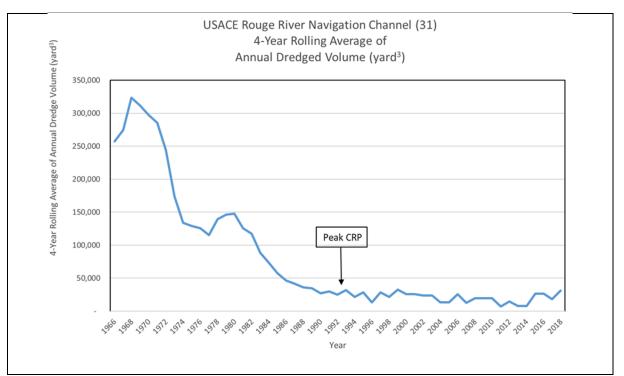


Figure 22. USACE Rouge River Navigation Channel (31), 4-Year Rolling Average of Annual Dredged Volume

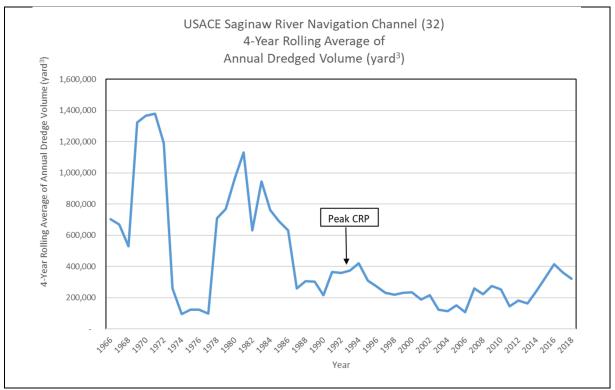


Figure 23. USACE Saginaw River Navigation Channel (32), 4-Year Rolling Average of Annual Dredged Volume

Based on these findings, the post-1993 USACE maintenance dredging data was utilized in this research to estimate the average annual rate of fluvial sediment delivery to the river outlet and was calculated by: (1) averaging the post-1993 USACE dredging data (1993 to 2019), (2) adding in the USACE estimate of dredging backlog through December 2019, and (3) adjusting volume dredged to remove the estimated littoral component. Using the post-1993 dredging data to estimate the average annual rate of sediment delivery to the river outlet resulted in annual rates that were very similar to the USACE (2020) dredging forecasts for 9 of the 11 watersheds, exceptions include: Black River-East (6) and the Saginaw River (32). The USACE-Detroit does not prepare a dredging forecast for Manistique River (49) so this comparison was not available.

3.8.2 Conversion of the Average Annual Volume Dredged to Metric Tonnes

To convert the average annual volume of dredged sediment to metric tonnes, USACE pre-dredge sediment quality data were assessed (see Table 16). USACE predredge sediment quality samples are collected prior to dredging and represent composite samples of the dredge cut. A total of 821 pre-dredge sediment quality samples were evaluated during this research and samples were collected from each of the 30 Harbors (see Table 16). The specific weight of sediment was calculated using the bulk density and percent moisture data for each sediment sample. Then, the pre-dredge sediment quality sample locations were mapped, and pre-dredge sediment samples that were collected from the Outer Harbor (primarily littoral sediment) were removed from further consideration and the Inner Harbor (fluvial sediment) sample locations were retained. Based on analysis of the pre-dredge sediment quality data, a total of 752 pre-dredge sediment samples were collected from the Inner Harbor, these samples were collected

83

age to the strikt the	Average In- Place Density, Pre-Dredge Sediment Quality Sampling (lb/ft ³) 113.7 113.7 115.2 97.2	Total Number of In-Place Density F Measurements N number 11 13 15 11 13 20 20 20 20 20 21 20 27 20 27 27	Percent Moisture	1	Solid Content of Dredged		Specific Weight, Pre- Dredge
River Au Gres River Number Sediment Prace Density, Pre-Dredge Prace Density, Pre-Dredge River River USACE Harbor Sediment Sediment River USACE Harbor Black River Sediment Sediment River USACE Harbor Black River Sediment Sediment River USACE Harbor Black River Black River Black River Sediment Black River USACE Harbor 15.2 113.7 Au Sable Harbor 117.5 113.7 Black River Wers River Black River 13.0 97.2 113.7 Black River Sught Harbor 16.3 117.9 90.1 107.9 Manistee River Clinton River Clinton River 15.5 113.7 102.5 Manistee River Saugatuch Harbor 14.4 107.9 90.1 107.9 Ralamazoo River Saugatuch Harbor 14.4 107.7 114.2 114.2 Ralamazoo River Saugatuch Harbor 14.4 107.9 124.2	Place Density, Pre-Dredge Sediment Quality Sampling (lb/ft ³) 113.7 130.9 97.2 115.2				of Dredged		Weight, Pre- Dredge
River Au Gres River Pre-Dredge Sediment Pre-Dredge Sediment Pre-Dredge Sediment Pre-Dredge Sediment River Au Gres River River Au Gres River USACE Harbor Ibs/gal Quality Quality Au Gres River Au Gres River Black River Distrock Harbor Ibs/gal Ibn/fib Au Gres River Au Gres River Point Lookout Harbor Ib.7 30.0 Ibn/fib Black River - West Black River Point Lookout Harbor Ib.7 113.7 Au Sable Harbor Pine River Clinton River Charlabor Ib.7 30.0 Ibn/fib Manistee River Manistee Harbor Ib.7 10.7 90.1 Ibn/fib Ralamazoo River Saugatuch Harbor Ib.7 10.7 90.1 Ibn/fib Manistee River Muskegon River Saugatuch Harbor Ib.7 100.2 Ibn/fib Pertwarter River Grand Haven Harbor Ib.7 Ibn/fib Ibn/fib Ibn/fib Raada River Muskegon River Saugatuch Harbor Ib.7 Ibn/fib Ibn/fib Ibn/fib	Pre-Dredge Sediment Quality Sampling (lb/ft ³) 113.7 130.9 97.2 115.2			and and and			Dredge
River Au Sable River Sediment Cuality Sediment Cual	Sediment Quality Sampling (Ib/ft ³) 113.7 130.9 97.2 115.2			Number of	Sediment	Number of Pre-	
River USACE Harbor Quality Quality Quality Quality Cuality	Quality Sampling (lb/ft ³) 113.7 130.9 97.2 115.2			Percent	Adjusted for	Dredge Specific	Sediment
RiverSamplingSamplingSamplingRiverUSACE HarborIbs/gal(Ib/ft ³)Au Gres RiverUSACE HarborIbs/gal(Ib/ft ³)Au Gres RiverPoint Lookout HarborI5.2113.7Betsie RiverBetsie RiverBack River13.097.2Back River - EastBack RiverI3.097.2Back River - WestCharlevoix Harbor12.3121.9Back River - WestCharlevoix Harbor12.3121.9Rinto RiverCharlevoix Harbor16.3121.9Clinton RiverGrand Haven Harbor14.4107.9Riamazoo RiverGrand Haven Harbor16.3121.9Manistee RiverGrand Haven Harbor14.5108.5Manistee RiverGrand Haven Harbor14.5108.5Muskegon RiverGrand Haven Harbor14.5108.5Muskegon RiverGrand Haven Harbor14.5108.5Pigeon RiverGrand Haven Harbor14.5108.5Muskegon RiverGrand Haven14.610.7Pigeon RiverGrand Haven14.5108.5River RaisinNouroe Harbor14.5108.5River RaisinNouroe Harbor14.5107.9Saginaw RiverSaginaw River12.795.0Stuth HavenSaginaw River12.795.0Stuth HavenSaginaw River12.795.0Stuth RiverSaginaw River12.795.0Stuter River Harbor14.4107.9<	Sampling (lb/ft ³) 113.7 130.9 97.2 115.2			Moisture	Moisture	Weight	Quality
RiverUSACE HarborIbs/gal(Ib/ft ³)Au Gres RiverVar Sable RiverUSACE Harbor15.2113.7Au Sable RiverPoint Lookout Harbor15.2113.7Au Sable RiverBetsie RiverAu Sable Harbor17.5130.9Back River - EastBlack RiverBlack River13.097.2Black River - WestHolland Harbor13.090.1Macatawa RiverHolland Harbor10.790.1Rinton RiverGrand RiverIsa.90.1Clinton RiverGrand River12.1.9107.9Manistee RiverGrand Harbor14.5108.5Manistee RiverMuskegon Harbor14.5108.5Manistee RiverMuskegon Harbor14.5108.5Muskegon RiverRouge River14.8110.7Pigeon RiverGasenulle Harbor14.5108.5River RaisinMouroe Harbor14.5108.5River RaisinRouge River11.485.3River RaisinRouge River11.485.3River RaisinRouge River11.485.3Saginaw RiverSeebewaing River12.795.0Staginaw RiverSeebewaing River11.4107.7Sebewaing RiverSeebewaing River11.4107.7Staginaw RiverSeebewaing River11.4107.7Staginaw RiverSeebewaing River12.2123.7Staginaw RiverSeebewaing River11.4107.7Stager River <th></th> <th>number 29 11 15 20 20 31 31 4</th> <th>%</th> <th>Measurements</th> <th>Content</th> <th>Measurements</th> <th>Assess.</th>		number 29 11 15 20 20 31 31 4	%	Measurements	Content	Measurements	Assess.
Au Gres River Point Lookout Harbor 15.2 113.7 Au Sable River Au Sable Harbor 17.5 130.9 Black River East River Black River 13.0 97.2 Black River East Black River 13.0 97.2 130.9 Black River Veest South Haven Harbor 10.7 90.0 Macatawa River Holland Harbor 10.7 90.0 90.1 Chardower Charlowick Harbor 15.5 112.1.9 90.1 Chand River Grand River 12.0 90.1 102.5 Manistee River Manistee Harbor 14.5 108.5 108.5 Muskegon River Saugatuch Harbor 14.5 102.5 110.7 Pentwater River Manistee Harbor 14.5 108.5 100.7 Pentwater River Muskegon River 14.5 108.5 100.7 Pentwater River Caseville Harbor 14.5 108.5 108.5 Rouge River Saugatuch Harbor 14.8 110.7 <		29 11 20 31 4 4	2	number	lbs/ft ³	number	lbs/ft ³
Au Sable River Au Sable River Au Sable River 17.5 130.9 Betsie River Frankfort Harbor 13.0 97.2 Black River - East Black River 13.0 97.2 Black River - West South Haven Harbor 13.0 97.2 Black River - West South Haven Harbor 10.7 90.0 Pine River Holland Harbor 10.7 90.1 Finand River Crand Viver 12.3 121.9 Clinton River Grand Harbor 15.5 115.9 Glinton River Grand Harbor 14.5 102.5 Manistee River Manistee Harbor 14.5 108.5 Manistee River Muskegon Harbor 14.5 102.5 Pigeon River Saugatukor 14.5 108.5 Pigeon River Nuskegon Harbor 14.5 107.7 Pigeon River Saugatukor 14.5 108.5 River Raisin Monroe Harbor 14.5 108.5 River River Saginaw River 15.9 110.7 Saginaw River Sasin River 12.4 107.7		11 15 20 31 4 4	35.8	29	73.0	23	69.6
Betsie River Frankfort Harbor 13.0 97.2 Black River - East Black River 15.4 115.2 Black River - West South Haven Harbor 10.7 90.1 Pine River Clinton River 16.3 121.9 Pine River Clinton River 16.3 121.9 Ofmont River Clinton River 16.3 121.9 Grand River Clinton River 16.3 121.9 Grand River Grand Harbor 15.5 115.5 Manistee River Muskegon Harbor 14.5 108.5 Muskegon River Saugatuch Harbor 14.5 108.5 Muskegon River Rouge River 14.5 108.5 Pigeon River Rouge River 14.5 108.5 River Raisin Monroe Harbor 14.4 107.7 Saginaw River Saginaw River 12.4 128.7 Saginaw R		15 20 31 4	16.6	23	109.1	11	110.8
Black River - East Black River 15.4 115.2 Black River - West South Haven Harbor 10.7 80.0 Pine River Clinton River Charlevoix Harbor 10.7 80.0 Pine River Clinton River Charlevoix Harbor 16.3 121.9 Clinton River Clinton River 15.5 115.5 115.9 Grand River Manistee River 13.7 102.5 90.1 Manistee River Manistee Harbor 13.7 102.5 1115.9 Manistee River Muskegon Harbor 14.4 102.5 1115.9 Manistee River Muskegon Harbor 14.5 102.5 1102.7 Pigeon River Saginaw River 14.4 102.7 90.1 Rouge River Rouge River 14.8 110.7 95.0 Saginaw River Sebewaing River 12.7 95.0 78.5 St. Joseph River Monroe Harbor 11.4 85.3 55.0 St. Joseph River Sebewaing River 12.7 95.0 57.0 St. Joseph River St. Joseph River 11.4		20 20 31 27	48.2	16	50.4	14	50.3
Black River - WestSouth Haven Harbor14,4107.9Macatawa RiverHolland Harbor10.780.0Pine RiverClinton RiverCharlevoix Harbor10.780.0Rine RiverClinton RiverClinton River12.090.1Grand RiverGrand Haven Harbor13.7115.5115.9Grand RiverGrand Haven Harbor13.7102.590.1Grand RiverGrand Haven Harbor14.5108.590.1Muskegon RiverMuskegon Harbor14.5108.5110.7Pertwater RiverMuskegon Harbor14.5110.788.3Pere Marquette RiverLudington Harbor14.5110.7108.5Pigeon RiverCasewille Harbor14.5110.795.0Saginaw RiverSaginaw River11.485.388.3Saginaw RiverSaginaw River12.795.095.0Saginaw RiverSaginaw River12.795.0104.7Muhde Bay RiverSt. Joseph River12.795.0107.9St. Joseph RiverSt. Joseph River12.795.0107.9White Ri		20 31 27	28.1	20	82.9	20	83.0
Macatawa RiverHolland Harbor10.780.0Pine RiverCharlevoix Harbor16.3121.9Pine RiverClinton RiverClinton River12.090.1Grand RiverGrand Haven Harbor13.7102.5115.9Grand RiverGrand Haven Harbor13.7102.5115.9Kalamazoo RiverSaugatuch Harbor13.7102.5115.9Manistee RiverMuskegon RiverNuskegon Harbor14.5108.5Muskegon RiverNuskegon Harbor14.5108.5110.7Pert Marquette RiverLudington Harbor14.8110.7Pigeon RiverLudington Harbor14.8110.7Pigeon RiverRouge River11.488.3Rouge RiverSaginaw River12.795.0Saginaw River15.9118.756bewaing River12.7St. Joseph RiverSt. Joseph River17.2104.7Munite RiverSt. Joseph River17.2104.7Munder Bay RiverSt. Joseph River12.795.0St. Joseph River11.4107.9104.7Manistique RiverRouge River Harbor10.578.5Black River Harbor10.578.5107.9Ordar RiverNihite Lake Harbor10.573.5Ontonagon RiverSt. Joseph River17.2104.7Manistique RiverMunder Bay River11.4107.9Manistique RiverNortage River Harbor12.795.0Manistique River		31 4 27	26.3	29	79.5	21	101.4
Pine RiverCharlevoix Harbor16.3121.9Clinton RiverClinton RiverClinton River12.090.1Grand RiverGrand RiverGrand Haven Harbor13.7102.5Kalamazoo RiverGrand Haven Harbor13.7102.5Manistee RiverManistee Harbor14.5108.5Muskegon RiverMuskegon Harbor14.5108.5Pere Marquette RiverLudington Harbor14.5108.5Pere Marquette RiverLudington Harbor14.8110.7Pigeon RiverRouge River14.8110.7Pigeon RiverCaseville Harbor14.8110.7Rouge RiverSaginaw River11.485.3Saginaw RiverSaginaw River15.9118.7Saginaw RiverSaginaw River12.795.0St. Joseph River17.2128.7104.7White RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2123.7St. Joseph River17.2123.795.0St. Joseph River17.2127.2107.9Mitte RiverMitte Lake Harbor10.578.5Dead RiverRever Harbor12.795.0Manistique RiverManistique Harbor12.795.0Manistique RiverManistique Harbor12.795.0Manistique RiverManistique Harbor12.795.0Mononagon RiverNotrage River12.795.0Muter RiverManistique		4 77	63.0	31	29.6	31	31.2
Clinton RiverClinton River12.090.1Grand RiverGrand RiverGrand Haven Harbor15.5115.9Grand RiverGrand Haven Harbor13.7102.5Manistee RiverManistee RiverManistee Harbor13.7102.5Muskegon RiverMuskegon Harbor14.5108.5Perte Marquette RiverNuskegon Harbor14.5108.5Perte Marquette RiverLudington Harbor14.8110.7Pigeon RiverRouge River14.8110.7Pigeon RiverCaseville Harbor14.8110.7Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River12.795.0St. Joseph River17.2128.7104.7White RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7St. Joseph River17.212.795.0St. Joseph River17.2127.2Outonagon River10.578.5Black River (Gogebic)Black River Harbor10.5Manistique RiverManistique Harbor12.795.0Manistique RiverMenominee RiverMenominee River12.7Ontonagon RiverOntonagon Harbor12.795.0Mittefish Point Harbor13.5101.0Mittefish Point Harbor15.5121.2Mittefish Point Harbor15.5121.2Mittefish Point Harbor15.5121.2Mittefish Point Harbor15.		77	36.3	8	77.6	4	95.8
Grand RiverGrand RiverGrand Haven Harbor15.5115.9Kalamazoo RiverSaugatuch Harbor13.7102.5Manistee RiverManistee Harbor13.7102.5Muskegon RiverMuskegon Harbor14.5108.5Pertwater RiverMuskegon Harbor16.6124.2Perte Marquette RiverLudington Harbor16.6124.2Pigeon RiverRouge River14.8110.7Pigeon RiverCaseville Harbor14.8110.7Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River12.795.0St. Joseph River17.2128.7104.7Mhite RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2124.2St. Joseph River17.212.795.0St. Joseph River17.2128.7104.7White RiverMhite Lake Harbor10.578.5Dead RiverRouder River10.512.12Cedar RiverManistique Harbor12.795.0Manistique RiverManistique Harbor12.795.0Mutefish RiverMenominee RiverMenominee Harbor12.7Ontonagon RiverOntonagon Harbor12.795.0Mittefish Point Harbor13.5101.0Mittefish Point Harbor15.5121.2Mittefish Point Harbor15.5121.2Mittefish Point Harbor15.5121.2Mittefish Point Harbor		1	44.6	27	49.9	25	51.9
Kalamazoo RiverSaugatuch Harbor13.7102.5Manistee RiverManistee Harbor14.5108.5Muskegon RiverMuskegon Harbor16.6124.2Perte Marquette RiverPentwater Harbor16.6124.2Pere Marquette RiverLudington Harbor14.5108.5Pigeon RiverRouge River14.8110.7Pigeon RiverCaseville Harbor14.5108.5Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River12.795.0St. Joseph River17.2128.7104.7Mhite RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7St. Joseph River17.212.795.0St. Joseph River17.212.795.0St. Joseph River17.212.795.0St. Joseph River17.212.795.0St. Joseph River17.212.795.0Mitte RiverWhite Lake Harbor10.578.5Dead RiverPresque Isle Harbor10.572.2Manistique RiverManistique Harbor12.795.0Manistique RiverMenominee RiverMenominee River12.7Muterifish RiverMenominee RiverMenominee Harbor12.7Portage RiverOntonagon Harbor15.5121.2Portage RiverMitterfish Point Harbor15.5101.0Mitterfish RiverMitterfish Point Harbor15.5 <td></td> <td>25</td> <td>28.2</td> <td>37</td> <td>83.2</td> <td>25</td> <td>76.6</td>		25	28.2	37	83.2	25	76.6
Manistee RiverManistee RiverManistee Harbor14.5108.5Muskegon RiverMuskegon Harbor16.2121.2Pertwater RiverMuskegon Harbor16.6124.2Pere Marquette RiverLudington Harbor16.6124.2Pigeon RiverLudington Harbor14.5100.5River RaisinMonroe Harbor14.5108.5River RisinMonroe Harbor14.5108.5Rouge River11.485.3Saginaw River11.485.3Saginaw River12.795.0St. Joseph River17.2128.7Thunder Bay River17.2128.7St. Joseph River17.2128.7Thunder Bay River17.2128.7St. Joseph River17.2128.7St. Joseph River17.2124.2St. Joseph River17.2128.7Mitte RiverMhite Lake Harbor10.5Thunder Bay River10.578.5Black River (Gogebic)Black River Harbor10.5Dead RiverManistique Harbor12.7Manistique RiverMenominee RiverMenominee RiverMutterfish RiverMenominee RiverMenominee Harbor17.0Ontonagon RiverOntonagon Harbor15.5121.2Portage RiverMintefish Point Harbor15.5121.2Portage RiverMintefish Point Harbor15.5121.2Point Harbor15.5121.2121.2Mintefish Point Harbor15.5 <td< td=""><td></td><td>15</td><td>39.5</td><td>15</td><td>62.0</td><td>10</td><td>53.3</td></td<>		15	39.5	15	62.0	10	53.3
Muskegon River Pentwater RiverMuskegon Harbor16.212.1.2Pentwater River Pertwater RiverPentwater Harbor16.612.4.2Pere Marquette River Pigeon RiverLudington Harbor14.5110.7Pigeon River River RisinCaseville Harbor14.512.4.2Rouge River Saginaw River14.5108.5108.5Rouge River Sebewaing River11.485.388.3Saginaw River St. Joseph River11.485.385.3St. Joseph River17.212.795.0104.7White River Mhite RiverSt. Joseph River17.2128.7104.7White River Dead RiverSt. Joseph River17.2128.7104.7White River Manistique RiverSt. Joseph River17.2121.2121.2Cedar River Manistique RiverManistique Harbor10.578.578.5Pead River Menominee RiverMenominee Harbor12.795.0127.2Ontonagon River Multefish Point Harbor15.2121.2121.2Portage River Multefish Point Harbor15.5121.2121.2Portage River Multefish Point Harbor15.5121.2121.2Portage River Multefish Point Harbor15.5121.2121.2Portage River Multefish Point Harbor15.5121.2121.2Portage River Multefish Point Harbor15.5121.2121.2Point Harbor16.5121.2121.2121.2Point Harbor </td <td></td> <td>21</td> <td>25.4</td> <td>21</td> <td>80.9</td> <td>18</td> <td>78.8</td>		21	25.4	21	80.9	18	78.8
Pentwater RiverPentwater Harbor16.6124.2Pere Marquette RiverLudington Harbor14.5110.7Pigeon RiverLudington Harbor14.5108.5River RaisinMonroe Harbor14.5108.5River RiverCaseville Harbor14.5108.5River RiverCaseville Harbor14.5108.5Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River15.9118.7Sebewaing RiverSt. Joseph River12.795.0St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7White RiverMite Lake Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Dead RiverPresque Isle Harbor14.4107.9Dead RiverManistique Harbor12.795.0Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee RiverMenominee Harbor12.7Portage RiverMenominee RiverMenominee Harbor12.7Portage RiverMenominee RiverMittefish Point Harbor15.5Mittefish RiverMittefish Point Harbor15.5101.0		10	23.2	16	93.0	2	91.1
Pere Marquette RiverLudington Harbor14.8110.7Pigeon RiverRouge River14.5108.5River RaisinMonroe Harbor14.5108.5River RiverCaseville Harbor14.5108.5Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River11.485.3Saginaw RiverSaginaw River12.795.0St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7White RiverMhite Lake Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor14.4107.9Dead RiverManistique Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Monominee RiverMenominee Harbor12.795.0Motonagon RiverOntonagon Harbor17.0127.2Portage RiverKeweenaw Waterway13.5101.0Whitefish Point Harbor16.5123.4		7	19.5	4	100.0	4	119.4
Pigeon RiverCaseville Harbor14.5108.5River RaisinMonroe Harbor14.5108.5River RaisinMonroe Harbor11.888.3Rouge RiverSaginaw River11.485.3Saginaw RiverSaginaw River12.795.0St. Joseph RiverSt. Joseph River12.795.0St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7White RiverMhite Lake Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor14.4107.9Dead RiverCedar RiverManistique Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Monominee RiverMenominee RiverMenominee Harbor12.795.0Portage RiverMenominee RiverMenominee Harbor17.0127.2Portage RiverKeweenaw Waterway13.5101.0Whitefish Point Harbor16.5123.4		9	21.3	13	87.2	80	91.0
River RaisinMonroe Harbor11.888.3Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River11.485.3Saginaw RiverSaginaw River11.485.3Sebewaing RiverSaginaw River12.795.0St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7Thunder Bay RiverAlpena Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Dead RiverCedar River Harbor14.4107.9Dead RiverManistique Harbor14.4107.7Manistique RiverMenominee RiverMenominee Harbor12.7Ontonagon RiverOntonagon Harbor15.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		10	32.9	26	72.8	ю	83.8
Rouge RiverRouge River11.485.3Saginaw RiverSaginaw River15.9118.7Saginaw RiverSaginaw River15.9118.7Sebewaing RiverSt. Joseph River12.795.0St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7White RiverAlpena Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Dead RiverCedar River Harbor14.4107.9Dead RiverManistique Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Portage RiverOntonagon Harbor15.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		69	48.4	69	45.5	35	42.3
Saginaw River15.9118.7Saginaw RiverSaginaw River12.795.0Sebewaing RiverSt. Joseph River17.2128.7St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River17.2128.7White RiverAlpena Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Dead RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Manistique RiverMenominee RiverMenominee River12.7Ontonagon RiverOntonagon Harbor15.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		51	47.2	51	45.1	50	45.2
Sebewaing River12.795.0St. Joseph RiverSt. Joseph River17.212.8.7St. Joseph RiverSt. Joseph River17.212.8.7Thunder Bay RiverSt. Joseph River17.212.8.7White RiverMhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor10.573.5Dead RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.9Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Ontonagon RiverOntonagon Harbor15.2121.2Portage RiverMenominee RiverMenominee Harbor15.2101.0Whitefish RiverWhitefish Point Harbor16.5123.4		20	37.8	88	73.9	83	64.2
St. Joseph RiverSt. Joseph River17.2128.7Thunder Bay RiverSt. Joseph River14.0104.7Thunder Bay RiverAlpena Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Cedar RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.9Manistique RiverManistique Harbor12.795.0Menominee RiverOntonagon Harbor17.0127.2Portage RiverContonagon Harbor15.2101.0Whitefish RiverWhitefish Point Harbor16.5123.4		17	41.1	24	56.0	18	57.8
Thunder Bay RiverAlpena Harbor14.0104.7White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Cedar RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.9Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Ontonagon RiverOntonagon Harbor15.2101.0Whitefish RiverWhitefish Point Harbor16.5123.4		29	31.7	29	87.9	20	73.1
White RiverWhite Lake Harbor10.578.5Black River (Gogebic)Black River Harbor16.2121.2Cedar RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee River17.0127.2Ontonagon RiverOntonagon Harbor15.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		17	38.3	22	64.6	9	84.9
Black River (Gogebic) Black River Harbor 16.2 121.2 Cedar River Cedar River Harbor 14.4 107.9 Dead River Presque Isle Harbor 14.4 107.7 Manistique River Manistique Harbor 12.7 95.0 Menominee River Menominee Harbor 17.0 127.2 Ontonagon River Ontonagon Harbor 15.2 121.2 Portage River Keweenaw Waterway 13.5 101.0 Whitefish River Whitefish Point Harbor 16.5 123.4		59	71.7	64	22.2	56	23.1
Cedar RiverCedar RiverLot.9Dead RiverCedar River Harbor14.4107.9Dead RiverPresque Isle Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Ontonagon RiverOntonagon Harbor16.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		6	23.4	6	92.9	5	92.6
Dead RiverPresque Isle Harbor14.4107.7Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Ontonagon RiverOntonagon Harbor16.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		8	25.7	18	80.2	ı	ı
Manistique RiverManistique Harbor12.795.0Menominee RiverMenominee Harbor17.0127.2Ontonagon RiverOntonagon Harbor16.2121.2Portage RiverKeweenaw Waterway13.5101.0Whitefish RiverWhitefish Point Harbor16.5123.4		10	31.8	16	73.5	I	ı
Menominee River Menominee Harbor 17.0 127.2 Ontonagon River Ontonagon Harbor 16.2 121.2 Portage River Keweenaw Watenway 13.5 101.0 Whitefish River Whitefish Point Harbor 16.5 123.4		189	27.6	260	68.8	189	68.2
Ontonagon River Ontonagon Harbor 16.2 121.2 Portage River Keweenaw Waterway 13.5 101.0 Whitefish River Whitefish Point Harbor 16.5 123.4		44	28.2	44	91.3	30	87.8
Portage River Keweenaw Waterway 13.5 101.0 Whitefish River Whitefish Point Harbor 16.5 123.4		18	22.9	18	93.4	14	93.3
Whitefish River Whitefish Point Harbor 16.5 123.4		19	37.5	31	63.1	27	64.0
	.5 123.4	11	23.1	15	94.9	1	
Average: 14.5 108.4 n =		n = 821	34.2	n = 1,073	72.8	n = 752	73.5
						Geometric Mean	69.1
						Weighted Average	63.6

Table 16. Estimate of Specific Weight of Fluvial Sediment

from 27 of the 30 Harbors. The distribution of specific weight of the 752 fluvial sediment samples is shown on Figure 24.

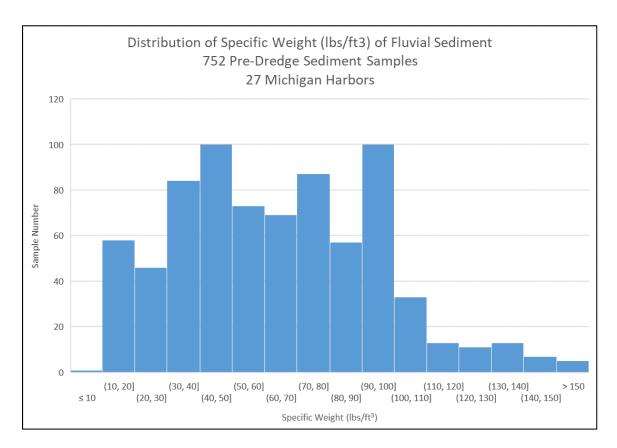


Figure 24. Distribution of Specific Weight, 752 Pre-Dredge Sediment Samples

With respect to specific weight of fluvial sediment from these 27 Harbors, the weighted average (based on the number of samples per Harbor), geometric mean, and mean were 63.6, 69.1, and 73.5 pounds/cubic feet of sediment, respectively. The geometric mean of 69 pounds/cubic feet of sediment was utilized to convert the average annual volume of sediment dredged to metric tonnes for the 12 Harbors included in this research (see Table 17). The average annual rate of fluvial sediment accumulation within the selected harbors served as the dependent variable in the subsequent regression analysis discussed in Chapter Four.

Table 17. Comparison of Estimates of Annual Fluvial Sediment Delivery: Since 1st Recorded Dredging Event and Post-CRP, and Adjusted to Removal Fluvial Sediment

	35,359	1993	40.000	-	-	40.000	40.000		40.239	53.651	Ontonagon River	53
7,300	8,599	NA	5,000	10	5	50,000	25,000		8,599	4,525	Menominee River	50
11,000	13,190	NA	NA	•	•		•		13,190	6,948	Manistique River	49
12,000	14,071	1993	15,000	4	2	60,000	30,000	40,000	17,552	70,210	St. Joseph River	34
190,000	223,740	1992	28,868	æ	2	100,000	50,000	180,000	401,438	446,042	Saginaw River	32
22,000	25,625	1993	17,321	5	2	60,000	50,000		80,084	80,084	Rouge River	31
62,000	73,351	1992	77,942	2	1	135,000	90,000		69,780	129,030	River Raisin	29
10,000	11,566	1993	10,000	4	2	40,000	20,000	35,000	17,502	87,512	Grand River	14
000'6	10,678	1992	5,164	5	£	20,000	20,000		9,405	10,450	Clinton River	12
17,000	20,486	1993	19,121	4	2	65,000	45,000	35,000	23,410	66,885	Macatawa River	∞
11,000	12,809	1991	3,240	10	5	35,000	15,000		11,151	11,151	Black River - East	9
4,400	5,156	1993	3,651	9	5	20,000	20,000		10,757	11,952	Au Gres River	1
(tonnes/year) ²	CRP (yard ³) ²	Peak CRP	(yard³)	(years)	(years)	(yard ³)	(yard ³)	(yard ³)	(yard ³) ¹	(yard ³)	River	Number
lbs/ft³	Since Peak	Base Year,	Estimates	Estimate	Estimate	Estimate	Estimate	Harbor	Component	Deepening)		Reference
Weight of 69	Delivery	Dredging	and High	High	Low	High	Low	Outer	Littoral	Channel		Watershed
1993, Specific	Sediment		Mean of Low	Dredging -	Dredging - Dredging - Dredging -	Dredging -		Dredging,	and Removal of	Dec 2019, Minus and		
Delivery Since	Fluvial		Geometric	Estimated	Forecast	Forecast	Forecast	Forecast	Dredging Data	Backlog Through Dredging Data		
Sediment	Annual		Dredging,						Based on	Event ⁴ (Including		
Average Annual	_		Forecast						River Outlet	Since Base		
			Annual						Delivery to the	Annual Dredging Delivery to the		
									Sediment	USACE Average		

backlog through December 2019 and adjusted to remove littoral sediment.

2. Estimated fluvial sediment delivery, basis: USACE average annual dredging since 1993 (Peak CRP), including backlog through Dec. 2019 and adjusted to remove littoral sediment. 3. For Macatawa River (8), Grand River (14), Saginaw Rive (32), and St. Joseph River (34), the USACE-Detroit District Prepared Prepared Dredging Forecasts for Both the Outer and

Inner Harbor. For The Remaining Eight Harbors, the USACE Dredging Forecast Combines The Outer and Inner Harbor Dredging. 4. Base Event, either the 1st dredging event or the most recent Rivers and Harbors Authorization, whichever is later.

86

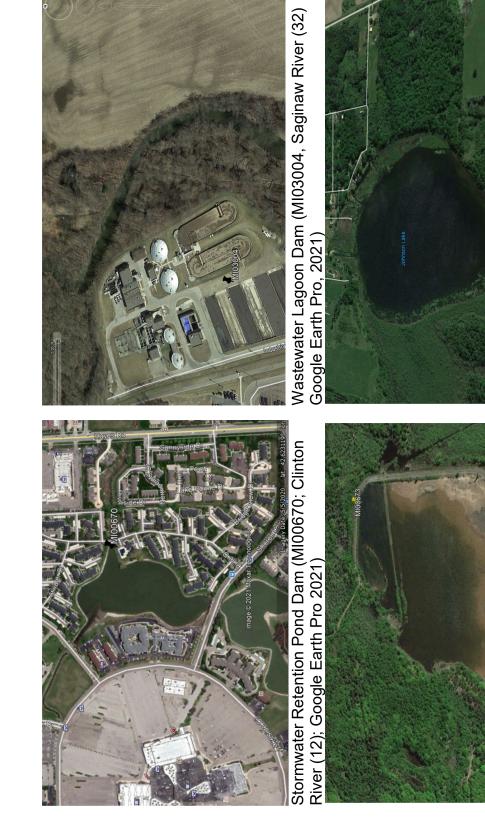
3.9 Assessment of Fluvial Depositional Areas, Upland and Aquatic Wetlands, Natural Lakes and Manmade **Reservoirs**

In conjunction with the calculation of watershed Curve Numbers, this research included the assessment of depositional areas within each of the 60 watersheds and five sub-watersheds, these depositional areas include: aquatic wetlands, upland wetlands, natural lakes and manmade reservoirs. The Michigan Resource Information System (MIRIS), Land Use/Cover Polygons (MDNR, 1978) were used to calculate the percentage of each watershed covered in aquatic wetlands, upland wetlands, and natural lakes. The percentage of the watershed covered in manmade reservoirs was calculated from the EGLE (2020) dam inventory database.

With respect to aquatic wetlands (non-forested wetlands), the following MIRIS Land Use designations (land use classification number) were utilized: aquatic bed (621), emergent (622), and flats (623). With respect upland wetlands (forested wetlands), the following MIRIS Land Use designations were used: wooded (611) and shub/scrub (622). With respect to natural surface water bodies, the following MIRIS Land Use designations were used: stream (51) and lake (52). The MIRIS Land Use designation for reservoirs is 53.

Based on the initial set of regressions (discussed in Chapter 4.2 and 4.3), the percentage of watershed covered by manmade reservoirs and natural lakes were identified as important variables. However, based on analysis of the MIRIS data (MDNR, 1978), the percentage of watershed covered in manmade reservoirs appears to have been under reported in virtually all of the watersheds and is likely due to the inadvertent inclusion of reservoir pool surface areas in watershed areas identified as natural Lakes.

To assess the percentage of the watershed covered in manmade reservoirs, the EGLE (2020) Dam Safety Unit provided an updated inventory of dams located in Michigan. Comparison to the 2018 to the 2020 inventory of dams reveals that 48 dams were added to the inventory that now totals 2,607 structures. In conjunction with this research, the EGLE dam inventory was updated to include the reservoir pool surface areas for 43 dams in addition to updating the location information for several hundred of the dams to ensure that they were located within one of the 60 watersheds and five subwatersheds that are the subject of this research. Of the 2,607 dams located in Michigan, 262 are located in the drainage areas of the Great Lakes ("Lake drainage areas") and are not assigned to one of the 60 Michigan watersheds and were excluded from this research.


Of the remaining 2,345 dams located in Michigan, 1,378 dams are located within the 60 watersheds and five sub-watersheds included in this research, these dams include FERC dams (dams regulated by the Federal Energy Regulatory Commission), hydropower dams, retired hydropower dams, farm ponds, and private and recreational dams (see Table 18). The remaining dams are not located on rivers, rather they are used for other purposes such as: water supply for industrial purposes (e.g. mining, agriculture), stormwater retention ponds, wastewater lagoons, tailing or debris ponds, and water level control structures (Table 18).

Dam Type and Use	Number
FERC Dam	87
Hydropower Dam	16
Retired Hydropower Dam	104
Farm Pond, Private, Recreational Dam	1,171
Water Supply Dam	67
Stormwater Retention Pond Dam	65
Wastewater Lagoon Dam	15
Tailings or Debris Pond Dam	14
Level Control Structure Dam	806
Total Number of Dams:	2,345
FERC Dam - a hydropower dam regulated by the Fe	ederal
Energy Regulatory Commission.	

Table 18. Summary of Dam Type and Use, 60 Michigan Watersheds

Because the stormwater retention ponds, water supply ponds, wastewater lagoons, tailing or debris ponds, and water level control structures, are not located on the river where their presence could impact watershed sediment delivery to the river outlet, the reservoir pool surface areas of these structures were not included in this research (examples of these structures are shown on Figure 25).

Review of the EGLE (2020) dam inventory with respect to the 1,378 dams located in 60 Michigan watersheds that the subject of this research reveals that most dams are small. The distribution of dam height and reservoir pool surface area are shown on Figure 26 and Figure 27, respectively.

Google Earth Pro, 2021) Google Earth Pro 2021) Figure 25. Examples of Dams Not Included in the Percentage of Watershed Covered in Reservoirs Failings Pond Dam (MI00678; Portage River (55);

Level Control Structure Dam (MI01729; Au Gres River (1);

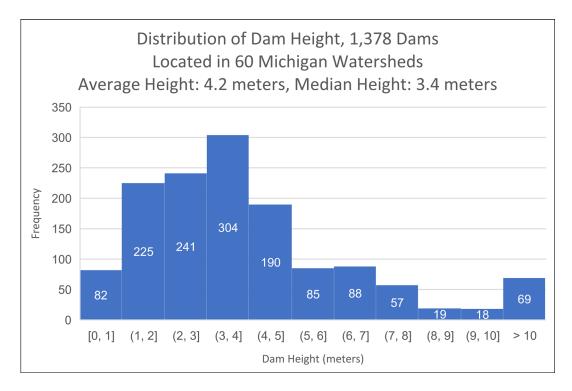


Figure 26. Distribution of Dam Height, 1,378 Dams Located in 60 Michigan Watersheds

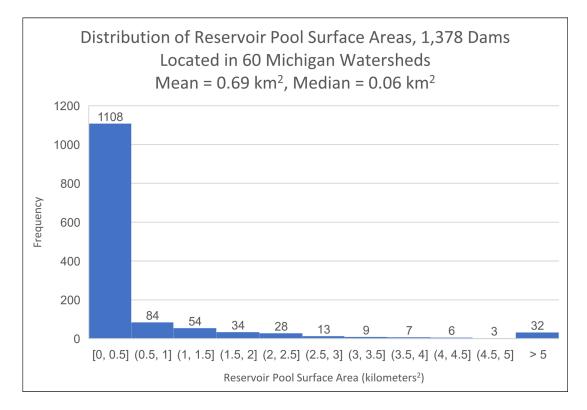


Figure 27. Distribution of Reservoir Pool Surface Areas, 1,378 Dams Located in 60 Michigan Watersheds

With respect to dam height, the maximum, average, and median elevations are 64 meters, 4.2 meters, 3.4 meters. The Victoria Dam (MI00203) on the Ontonagon River (53) is the highest dam in Michigan at 64 meters. There are 69 dams within these 60 Michigan watersheds that have a dam height of 10 meters or larger. Most dam heights in Michigan are small and reflect the low river slopes discussed previously. Of the 1,378 dams located in these 60 Michigan watersheds, 1,042 dams have dam heights of less than 5 meters (see Figure 26). Because most dams were built in glacial outwash deposits and have corresponding low river slopes, the reservoir pool surface areas are small. The maximum, average, and median reservoir pool surface areas are 72 square kilometers (Cheboygan Dam, MI00520), 0.69 square kilometers, and 0.06 square kilometers. Thirty-two dams have reservoir pool surface areas greater than 5 square kilometers. Of the 1,378 dams located in these 60 Michigan watersheds, 1,108 dams have reservoir pool surface areas that are less than 0.5 square kilometers (see Figure 27).

The percentage of the watershed covered in natural surface water bodies (lakes and rivers) from the MIRIS land use data (MDNR, 1978) was adjusted to account for percentage watershed covered in reservoirs based on the reservoir pool surface area contained the updated EGLE (2020) dam inventory. The total area of the watershed covered with reservoirs based on the MIRIS land use data (MDNR, 1978) and the updated EGLE (2020) dam inventory are 343 square kilometers and 1,107 square kilometers, respectively.

Although the 2011 National Land Cover Database does not separate out the area covered in reservoirs, the percentage of the watershed covered in surface water based

on the MIRIS land use (MDNR, 1978) and the National Land Cover Database are very However, there were significant differences between the percent of the similar. watershed covered in upland and aquatic wetlands based on comparison of MIRIS land use (MDNR, 1978) and the 2011 National Land Cover Database. Based on analysis of the 2011 NLCD, the percentage of watershed covered in wetlands was much greater than the area calculated using the MIRIS Land Use/Cover Polygons (MDNR, 1978). The difference in the percentage of watershed covered by aquatic and upland wetlands is likely due differences in how wetland land use was identified and categorized. The 2011 NLCD relies on pixel analysis of aerial photographs and the resolution is lower than the MIRIS land use resolution that is based on a raster file (EGLE, 2020). Because, the MIRIS Land Use/Cover Polygons (MDNR, 1978) were used to calculate the watershed Curve Numbers used in this research and because this data set served as the baseline watershed inventory for the State of Michigan, the MIRIS data set was used to calculate the percentage of the watershed covered in upland wetlands, aquatic wetlands, and surface water for each of the 60 watershed and five sub-watersheds included in this research.

3.10 Sediment Deposition and Reservoir Trapping Efficiency, Assessment of Reservoirs Trapping Efficiency Using the Brune GM (1953) Capacity/Inflow Methodology

Sediment deposition occurs throughout the watershed in the form of point bars, mid-channel bars, and deposition within adjacent and upland wetlands. Within a watershed, dams are very effective at reducing and sometimes nearly eliminating the downstream movement of bed material load (suspended load and bed load sediment). The amount of sediment trapped by a reservoir depends on the incoming flow rate of the rivers that discharges to the reservoir, the capacity and geometry of the impoundment, and the size of the sediment particles. An example of a dam with excessive accumulation of sediment within the reservoir is shown in Figure 28.

Figure 28. Photograph of the Cedar River Dam Spillway, Extensive Reservoir Deposition is Apparent on the East Side of the Cedar River Dam Reservoir, (MI00516), Built in 1890, Elk River Watershed (13) (Aerial Photograph, Google Earth Pro, 2021)

The USACE (1995) has observed that reservoir trapping efficiencies of fine sand sized particles (particle sizes greater than 0.125 millimeters) and larger to be nearly 100 percent; silts and clays are more difficult to settle out, but impoundments with as small a ratio as 0.1 of reservoir capacity to average annual rate of river inflow can retain nearly 80-95% of the bed material load. Depending upon the hydraulic retention time and geometry of the impoundment, frequently, only wash load (fine silts and clays) will be transported through the impoundment and downstream of the dam and bedload will be retained (USACE, 1995).

The trapping efficiency (E) of a reservoir can be defined as the percentage of the total inflowing sediment that is retained within the reservoir:

$$\mathsf{E} = \frac{Y_S(in) - Y_S(out)}{Y_S(in)} \tag{10}$$

E = trapping efficiency (expressed as a decimal or percentage)

Ys = Sediment yield (weight units)

- (in) = sediment inflow into the impoundment
- (out) = sediment outflow out of the impoundment

As sediment is trapped, the reservoir water storage capacity decreases and trapping efficiency decreases. Factors affecting reservoir sediment trapping efficiency include (USACE, 1995):

- <u>Ratio of Reservoir Storage Capacity (cubic meters) to the Inflow Rate (cubic meters/second) of Rivers that Discharge to the Impoundment</u>: The reservoir capacity-inflow ratio is a measure of retention time. The greater the retention time, the higher the rate of sediment deposition within the reservoir.
- <u>Sediment Particle Size.</u> Settling velocity is determined based on particle size.
 Evaluation of reservoir retention time in conjunction with settling velocity form the basis of many approaches used to evaluate reservoir trapping efficiency.
 Typically, only silts in clays are in suspension long enough to reach the dam outlet structure.

- <u>Reservoir Shape</u>: The shape of the reservoir affects the effective retention time and could cause "short circuiting" in which the effective retention time becomes much less than the retention time as determined by the reservoir capacity-inflow ratio.
- <u>Type of Dam Outlet:</u> The type of dam outlet (e.g. spillway or sluice gates) can affect the trapping efficiency by increasing or decreasing the reservoir retention time.
- <u>Operational Conditions of the Dam</u>: Lowering of the pool elevation of the impoundment decreases the retention time which subsequently decrease the reservoir trap efficiency.

There are three common methods to estimate reservoir trapping efficiency methods based on empirical data: the Capacity-Watershed Method (Brown's Curve), the Capacity-Inflow Method (Brune's Curve), and the Sediment Index Method (Churchill's Curve). A brief overview of these three methods as well as assessment of reservoir trapping efficiency of Michigan dams using one of these methods (the Brune Curve, 1953) are discussed in the following text and (USACE, 1995):

Brown CB (1943) developed a curve relating the ratio of reservoir capacity (C, in acre-ft) and watershed area (W, in square miles) to trap efficiency (E, in percent), using the following equation:

Reservoir Trapping Efficiency (E) =
$$100 \left\{1 - \frac{1}{\left(1 + \frac{KC}{W}\right)}\right\}$$
 (11) where,

K = coefficient

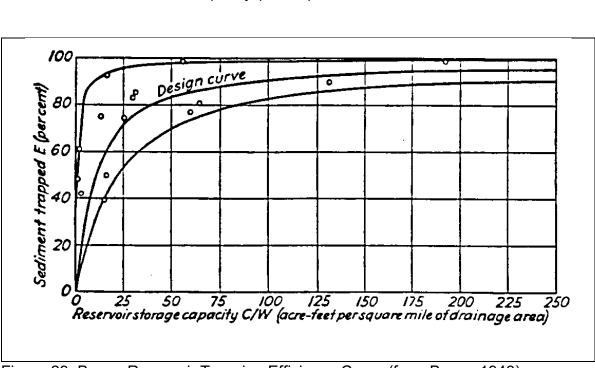


Figure 29. Brown Reservoir Trapping Efficiency Curve (from Brown 1943).

With respect to the Brown Curve (see Figure 29), the coefficient K varies from 1.0 (coarse sediments), 0.1 (medium sediments), and 0.046 (fine sediments), with a median value of 0.1 (Gill, 1979). A value for the coefficient K of 0.1 (Design Curve) was recommended for average conditions (Brown, 1943). The coefficient K increases to account for (1) for regions of smaller and varied retention time (calculated using the capacity-inflow ratio), (2) as the average grain size increases, and (3) for reservoir operations that prevent release of sediment through sluicing or movement of sediment toward the outlets by pool elevation regulation (USACE, 1995).

The Sediment Index Method (Churchill's Curve) relates the sedimentation index (SI) to reservoir trapping efficiency. Churchill (1948) used Tennessee Valley Authority Reservoir data to generate the curve shown in Figure 30. The sedimentation index (SI)

W = watershed area (miles²) C = reservoir capacity (acre-ft) of a reservoir is the period of retention (R) divided by the reservoir mean velocity; note that if the retention time or mean velocity cannot be obtained from field data, approximation can be made by assuming the effective retention time to be equal to the retention time as computed by using the C/I ratio (USACE, 1995).

As discussed in USACE (1995), the period of retention (R, in seconds) can then be computed by obtaining the capacity (C; cubic feet) of the reservoir at the mean operating pool elevation and dividing by the average daily inflow rate of the river (I; feet³/sec). The mean velocity (V; feet/second) is obtained by dividing the average daily inflow rate by the average cross-sectional area of reservoir (A, square feet) in which the average cross-sectional area is obtained by dividing the capacity by the reservoir length (L; feet), at the mean operating pool elevation (USACE, 1995).

Sedimentation Index (SI) =
$$\frac{Period \ of \ Retention \ (seconds)}{Mean \ Velocity \ (\frac{ft}{sec})}$$
(12)

Period of Retention (R; seconds) =
$$\frac{Reservoir Capacity (ft3)}{Daily Inflow Rate (\frac{ft3}{sec})}$$
(13)

Mean Velocity (V; ft/sec) =
$$\frac{Average Daily Inflow Rate(\frac{ft_3}{sec})}{Average Cross-Sectional Area of the Impoundment(ft2)} (14)$$

Cross Sectional Area of the Impoundment (A;
$$ft^2$$
) = $\frac{Reservoir Capacity (ft3)}{Reservoir Length (ft)}$ (15)

Sedimentation Index (SI) =
$$(CA)/I^2 = (C/I^2)(C/L) = (C/I)^2/L$$
 (16)

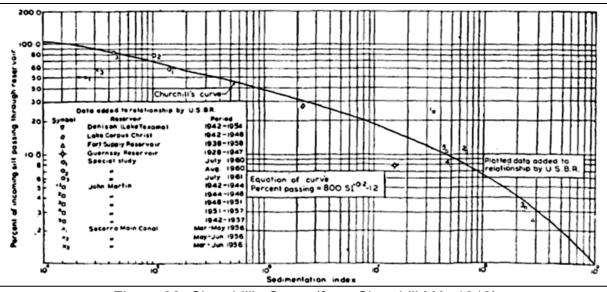


Figure 30. Churchill's Curve (from Churchill MA, 1948)

Churchill's Curve (Churchill MA, 1948) is presented on Figure 30 and represents the "percentage of incoming silt passing through reservoir" on the ordinate, which necessitates determining the difference between the value obtained and 100% to get the reservoir trapping efficiency; the term "silt" on the ordinate axis meant all the size classes of sediment when Churchill developed this relationship (USACE, 1995).

Although the use of the Churchill (1948) curves may give a better prediction of trapping efficiency than Brune's (1953) curve, it is very difficult to obtain the input data for calculating the sedimentation index; this is probably the reason why Brune's (1953) approach continues to be used so extensively as opposed to that of Churchill's (1948) Curve (Verstraeten G and Poesen J, 2000).

Brune GM (1953) analyzed 44 records of reservoir trapping efficiency and developed the Capacity-Inflow Method (Brune's Curve). The Brune Curve is an empirical relationship between reservoir trapping efficiency and the ratio of reservoir capacity to

mean annual inflow, both in the same volume units (USACE, 1995; Brune GM, 1953). The capacity inflow ratio (C/I) is the total reservoir storage capacity (C) divided by the average annual inflow (I) of water to the reservoir. The capacity inflow ratio (C/I) is also the hydraulic retention time of the impoundment, and reflects the average number of times water is replaced in the reservoir during a year (USGS, 1984c).

The Brune GM (1953) curves shown in Figure 31 reflects coarse grained sand, the middle curve reflects a mixture of sediment particle size (sand and silt), and the lower curve reflects fine grained sediments such as silts and clays (Verstraeten G and Poesen, J, 2000; USDA-SCS, 1983).

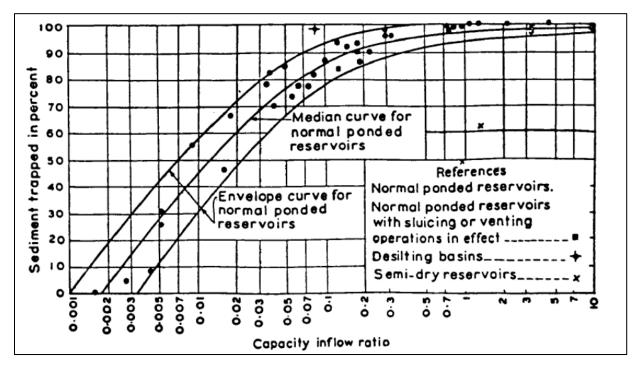


Figure 31. Reservoir Trapping Efficiency Curves, Capacity Inflow Ratio (from Brune GM, 1953)

The Brune GM (1953) curves were used to calculate sediment trapping efficiency and can be described using the equations listed in Table 19 (Verstraeten G and Poesen, J, 2000; USDA-SCS, 1983): Table 19. Equations Developed by Verstraeten G and Poesen J (2000) and USDA-SCS (1983) That Describe the Brune (1953) Reservoir Trapping Efficiencies Curves.

Brune (1953) Curve	C/I > 1	1 > C/I > 0.02	C/I < 0.02
Upper Curve (gravel and sand)	100	100 - (0.485[ln(C/I)] ^{2.99})	124 – (6.59[ln(C/I)] ^{1.52})
Medium Curve (silt and sand)	97	97 – (1.275[ln(C/I)] ^{2.47})	128 – (11.51[ln(C/I)] ^{1.304})
Lower Curve (clay and silt)	94	94 – (3.38[ln(C/I)] ^{1.92})	94 – (3.38[ln(C/I)] ^{1.92})

Note : [ln(C/I)] is the absolute value of the natural log of Capacity/Inflow (C/I).

Over the years, many authors have suggested improvements to Brown's (1943), Brune's (1953), and Churchill's (1948) approaches to sediment trap efficiency, however these changes typically involved either the addition of new data or minor modifications to the original curves (Gill MA, 1979; Dendy FE, 1974, Heinmann HG, 1981: Garg J and Jothiprakash J, 2008). Of these three methods, Brune's (1953) and Brown's (1943) approaches still remain in widespread use today (Mulu A and Dwarakish GS, 2015; Garg J and Jothiprakash J, 2008; Minear JT and Kondolf MG, 2009).

3.10.1 Estimated Settling Velocities of Sediment Using Stoke's Law and Ferguson and Church (2004) for Sand, Silt, and Clay-sized Particles

One possible reason that the Brown (1943), Brune (1953), and Churchill (1948) methods have stood the test of time, is that the trapping efficiency of reservoirs with respect to silt and sand sized particles is very evident based on calculation of settling velocities using Stoke's Law. Sediment deposition within the reservoir can be observed at many Great Lakes dams by: inspection of the reservoir, especially the area where the river enters the reservoir (delta deposits) from a watercraft or using aerial photographs;

bathymetric surveying of the reservoir to compare to the initial storage volume to the current storage volume; sampling of the suspended sediment where the river enters the reservoir and downstream of the dam during and following rainfall events; and, observations made during a dam removal when the sediment that has accumulated within the reservoir can be physically inspected.

Stoke's Law predicts the settling velocity of glass spheres in vertical laboratory tubes, however these settling velocities are conservative and apply to sediment particles where settling velocity is dominated by viscous drag. Examples of settling velocities calculated using Stoke's Law for sediment particle sizes common in the Great Lakes watershed are shown on Table 20. As the particle size becomes larger than very fine sand or silt, turbulent drag in the wake behind each sediment grain slows sand sized (and larger) sediment as they move through the water column; settling velocity based on turbulent drag can be represented as follows (Ferguson RI and Church, 2004):

$$V_{s} = ((4)(R)(g)(d)/(3)(C_{2}))^{0.5}$$
(17)

where,

R = submerged specific gravity (1.65 for quartz in water)

g = acceleration due to gravity (9.81 meters/second squared)

d = diameter (meters)

 C_2 = constant, equals 0.4 for smooth spheres and 1 for natural grains

Table 20. Example Sediment Settling Velocities Calculated Using Stokes Law (at 70F)

Stoke's Law

$$V_t = \frac{gd^2 \left(\rho_p - \rho_m\right)}{18\mu}$$

		nedium (μ) - water 1.27E-03 kilogram/(meter-second) at 50F 1.09E-03 kilogram/(meter-second) at 60F 9.54E-04 kilogram/(meter-second) at 70F 8.40E-04 kilogram/(meter-second) at 80F
9.8 meter/second ² variable meter	1.65 gram/centimeter ³ 2,650 kilogram/meter ³ 1.000 kilogram/meter ³	Kinematic Viscosity of medium (µ) - water 1.267E-06 m ^v 2/sec 1.27E-03 kilogi 1.094E-06 m ^v 2/sec 1.09E-03 kilogi 9.536E-07 m ^v 2/sec 9.54E-04 kilogi 8.395E-07 m ^v 2/sec 8.40E-04 kilogi
Acceleration due to gravity (g) 9.8 Particle diameter (d) variable	Submerged density of particle (ρ_p) - sediment 1.65 Density of particle (ρ_p) - sediment 2,650 Density of medium (ρ_m) - water 1.000	 n) - water ter-second) at 50F ter-second) at 60F ter-second) at 70F ter-second) at 80F

				Stoke's Law	
Particle	Particle			Settling	
Diameter	Diameter	USACE	Settling Velocity	Velocity	Settling Velocity
(meters)	(millimeters)	Classification	(meter/second)	(feet/second)	(feet/day)
0.00200000	2.00000		3.670411985	12.0389513	1,040,165.39
0.00050000	0.50000	coalse salla	0.229400749	0.7524345	65,010.34
0.00050000	0.50000	bano mi ilom	0.229400749	0.7524345	65,010.34
0.00025000	0.25000		0.057350187	0.1881086	16,252.58
0.00025000	0.25000	fine cond	0.057350187	0.1881086	16,252.58
0.00006250	0.06250		0.003584387	0.0117568	1,015.79
0.00006250	0.06250	eit ti	0.003584387	0.0117568	1,015.79
0.00000390	0.00390	OIIC	0.000013957	0.0000458	3.96
0.00000390	0.00390	nolo.	0.000013957	0.0000458	3.96
0.00000200	0.00200	CIAY	0.000003670	0.0000120	1.04

A settling velocity (V_s) equation combining both Stokes Law and the effects of fluid drag (turbulence) was developed for natural sediment particles by Ferguson and Church (2004) and is expressed in the following equation:

$$V_{s} = \frac{Rgd^{2}}{C_{1}v + (0.75C_{2}Rgd^{3})^{0.5}}$$
(18)

where,

R = submerged specific gravity (1.65 for quartz in water)

g = acceleration due to gravity (9.81 meters/second squared)

d = diameter (meters)

 C_1 = constant with a theoretical value of 18

v = kinematic viscosity (1.0 x 10^{-6} kilograms per meter per second)

 C_2 = constant, equals 0.4 for smooth spheres and 1 for natural grains

Settling velocities for a range of sediment particle sizes common to the Great Lake watersheds using both Stoke's Law and the Ferguson R and Church M (2004) equation are presented on Table 20 and Table 21. Review of Table 20 and Table 21 shows that Stokes Law adequately predicts settling velocities for particles smaller than fine silt, but due to turbulent drag, Stokes Law greatly over predicts settling velocities of coarser sized sediment particles in comparison to the Ferguson R and Church M (2004) methodology that is based on natural grains.

			Fergus	on and Church	(2004)
Particle Diameter	Particle Diameter	USACE	Settling	Settling Valuatity	Settling Velocity
(meters)	(millimeters)	Classification	Velocity (meter/second)	Velocity (feet/second)	Velocity (feet/day)
0.00200000	2.00000	OldSSINCation	0.196807701	2.323.91	17.004.19
0.00050000	0.50000	coarse sand	0.072058333	850.86	6,225.84
0.00050000	0.50000		0.072058333	850.86	6,225.84
0.00025000	0.25000	medium sand	0.032673578	385.81	2,823.00
0.00025000	0.25000	fine sand	0.032673578	385.81	2,823.00
0.00006250	0.06250		0.003344484	39.49	288.96
0.00006250	0.06250	silt	0.003344484	39.49	288.96
0.00000390	0.00390	SIL	0.000014306	0.17	1.24
0.00000390	0.00390	alay	0.000014306	0.17	1.24
0.00000200	0.00200	clay	0.000003766	0.04	0.33

Table 21. Settling Velocities Calculated Using Ferguson and Church (2004) Methodology

Although there are other factors that affect reservoir trapping efficiency and the settling velocities of sediment discharged into the reservoir (e.g. water temperature, particle shape and density, turbulence and shear velocity, concentration affects, flocculation of clay sized particles, etc.), the particle size of the incoming sediment, reservoir geometry, and the hydraulic retention time of the reservoir (the ratio of reservoir capacity to the inflow rate of rivers discharging to the impoundment) are clearly critical factors and support observations that most Great Lakes dams/reservoirs are very effective in retaining sediment larger than silt and sand sized particles (Alighalehbabakhani et al, 2017a; Alighalehbabakhani et al, 2017b; Baskaran et al, 2015; Jweda J and Baskaran M, 2011; Mabit et al, 2013; Mabit et al., 2014; USACE, 1995; Vorosmarty et al., 2003).

3.10.2 Estimated Reservoir Trapping Efficiency Using the Brune (1953) Capacity/Inflow Ratio Methodology

To further evaluate the impact of reservoirs on fluvial sediment delivery to the river outlet, this research involved a preliminary assessment of the reservoir trapping efficiency using the Brune GM (1953) capacity/inflow methodology of the dams located within the 60 watersheds included in this research. Of the 1,378 dams located in fluvial systems, the EGLE (2020) dam inventory contained information to calculate capacity/inflows for approximately 58% (802) of the dams. The equations presented in Table 19 (Verstraeten G and Poesen, J, 2000; USDA-SCS, 1983) were used to calculated the reservoir trapping efficiencies with respect to this research. With respect to dam capacity (C), the Normal Storage volume as reported in EGLE (2020) dam inventory was utilized. With respect to inflow (I), the inflow (I) is based on the ratio of the watershed area of the dam as reported by EGLE (2020) to the total watershed area of the river system and was applied to the annual mean flow at the river outlet (see Table 2, Table 3, Table 4, and Table 5). With respect to the 802 reservoirs that were evaluated, the average capacity/inflows is summarized on Figure 32.

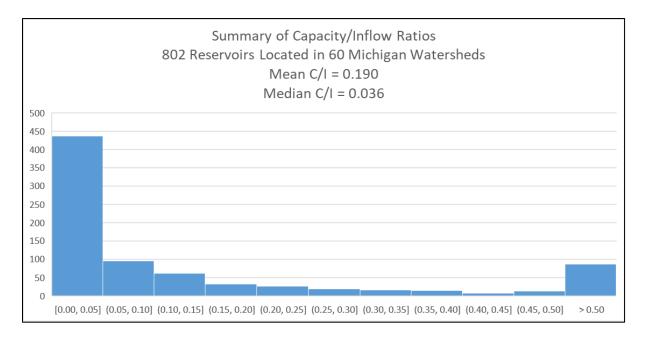


Figure 32. Summary of Reservoir Capacity/Inflow Ratios, 802 Reservoirs Located in 60 Michigan Watersheds

The Brune GM (1953) capacity/inflow estimates of reservoir trapping efficiencies are summarized in Figure 33 for the following sediment particle sizes: sand and gravel (upper curve), silt and sand (middle curve), and clay and silt (lower curve). Using the Brune GM (1953) capacity/inflow methodology, the average, estimated reservoir trapping efficiencies for sand and gravel, silt and sand, and clay silt are 75.6%, 68.5%, and 62.7%. As shown in Figure 33, Figure 34, and Figure 35, the reservoir trapping efficiencies decrease as a function of sediment particle size. These trapping efficiencies support observations and research that most Great Lakes dams/reservoirs are effective in retaining sediment larger than silt and sand sized particles (Alighalehbabakhani et al, 2017a; Alighalehbabakhani et al, 2017b; Baskaran et al, 2015; Creech et al, 2010; and, USACE, 1995 and 2008). For this reason, the total reservoir pool surface area within the 60 watersheds and five sub-watersheds was included as an independent variable in the regression analysis discussed in Chapter Four.

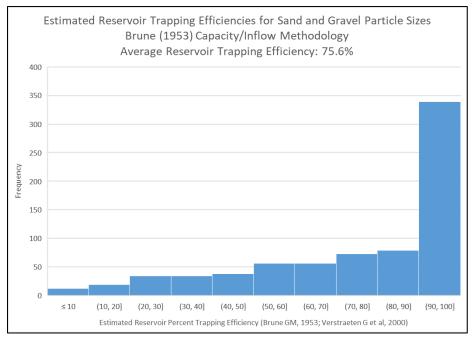


Figure 33. Estimated Reservoir Trapping Efficiencies for Sand and Gravel Particle Sizes, Brune (1953) Capacity/Inflow Methodology

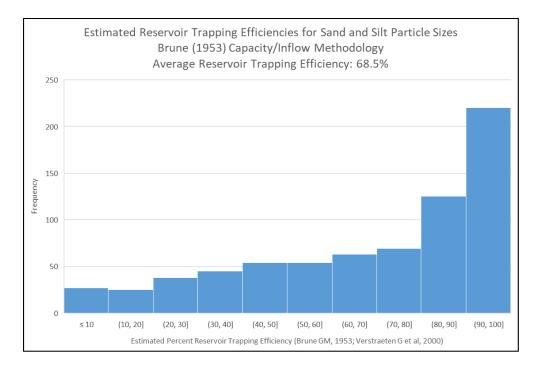


Figure 34. Estimated Reservoir Trapping Efficiencies for Silt and Sand Sized Particles, Brune (1953) Capacity/Inflow Methodology

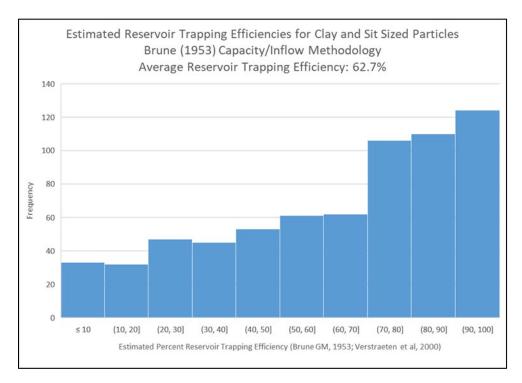


Figure 35. Estimated Reservoir Trapping Efficiencies for Clay and Silt Sized Particles, Brune (1953) Capacity/Inflow Methodology

With respect to the reservoirs that form the five sub-watersheds where radiometric dating of setting cores was completed (see Section 3.7), Brune (1953) reservoir trapping efficiencies were calculated using the method described previously and are summarized on Table 22.

Table 22. Summary of Estimated Reservoir Trapping Efficiencies for the Mio Dam (2A), Boardman Dam (9A), Webber Dam (14A), Ford Dam (15A), and Riley Dam (34A)

				Sand and	Silt and Sand	Clay and Silt
				Gravel Brune	Brune (1953),	Brune (1953),
			Capacity/	(1953),	Verstraeten	Verstraeten
Dam ID	Dam Name	Watershed	Inflow	Verstraeten et	et al (2000)	et al (2000)
MI00186	Mio Dam, 2A	Au Sable River	0.009	53%	40%	26%
MI00512	Boardman Dam, 9A	Boardman River	0.003	27%	13%	0%
MI00206	Webber Dam, 14A	Grand River	0.006	44%	30%	15%
MI00194	Ford Lake Dam, 15A	Huron River	0.045	86%	76%	64%
MI00533	Riley Dam, 34A	St. Joseph River	0.009	54%	40%	27%

The reservoir trapping efficiencies for medium grained sediment (sand and silt sized particles) ranged from 13% (Boardman Dam, 9A) to 76% (Ford Lake Dam, 15A). With respect to these five reservoirs, the capacity/inflow ratio and corresponding reservoir trapping efficiency of coarse, medium, and fine grained sediment reflects the large river inflow into a reservoir whose reservoir storage capacity is typical of dams constructed in low gradient streams in Michigan.

In conjunction with this research, 757 USACE pre-dredge sediment samples that were collected from the Inner Harbor (fluvial sediment) were evaluated with respect to grainsize distribution. Of the 757 pre-dredge samples, the weight percent of fines (silts and clays) was measured in 738 pre-dredge sediment samples, the distribution of percent fines is shown on Figure 36. Of the 757 pre-dredge sediment samples, 218 sediment samples have greater than 50% silt and clay sized particles ('fines").

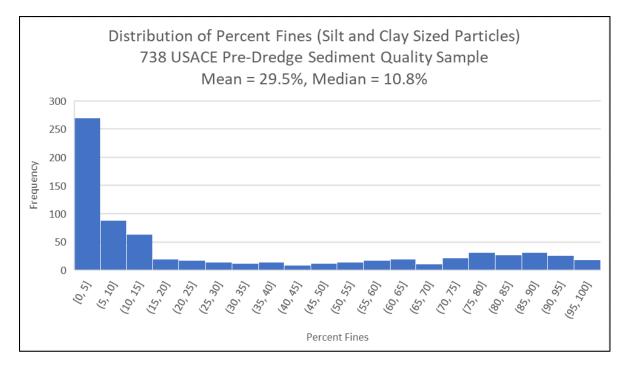


Figure 36. Distribution of Percent Fines (Silt and Clay Sized Particles), 738 USACE Pre-Dredge Sediment Quality Samples

Review of Figure 36 reveals that the distribution of percent fines is skewed towards coarser sediment (fine to medium grained sand) and is consistent with bedload. Grainsize distribution analysis was completed by the USACE on 252 of 757 pre-dredge sediment quality samples, and the distribution of D_{50} (the value of the particle diameter at 50% in the cumulative distribution) is presented on Figure 37. Of these 252 samples, the mean and median grainsizes are 0.417 millimeters and 0.267 millimeters which corresponds to medium grained sand.

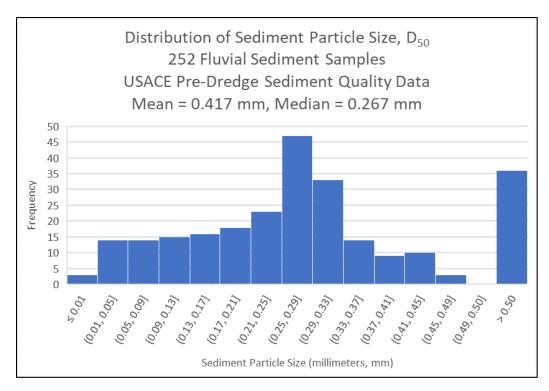


Figure 37, Distribution of Sediment Particle Size, D50, 252 USACE Pre-Dredge Sediment Quality Samples

Given the example settling velocities calculated using Stokes Law (Table 20) and Ferguson R and Church M (2004; Table 21) and the estimated reservoir trapping efficiencies presented on Figures 28-30 (Brune,1953), the grainsize distribution of the USACE pre-dredge sediment quality samples supports the observation that Great Lakes dams/reservoirs are effective in retaining fluvial silt to sand sized and larger sediment particles with reservoir sediment trapping efficiencies ranging from 62.7% to 75.6%.

CHAPTER 4 RESULTS AND DISCUSSION

This research involved development of an empirical equation that can be utilized as a statistical model to describe the relationship between bedload sediment delivery to the river outlet and significant watershed characteristics. This empirical equation was developed using step-wise regression analysis to identify predictive variables. The dependent variable is the annual watershed sediment delivery to the river outlet for 12 rivers based on USACE-Detroit District dredging data (see Table 17) and for five subwatersheds using ¹³⁷Cs and ²¹⁰Pb radiometric dating (see Table 13). Dependent and independent variables are shown on Tables 23 to 28. Four sets of regression analyses were completed, these include:

- Assessment of watershed variables in conjunction with prediction of mean annual river flow and selected recurrence interval flows using nontransformed dependent and independent variables.
- Assessment of watershed variables in conjunction with prediction of watershed sediment delivery at the river outlet using non-transformed dependent and independent variables, 12 watersheds
- Assessment of watershed variables in conjunction with prediction of watershed sediment delivery at river outlet using non-transformed dependent and independent variables, 17 watersheds
- Assessment of watershed variables in conjunction with prediction of watershed sediment delivery at the river outlet using natural log transformed dependent and independent variables, 17 watersheds.

Table 23. Watershed Area, Curve Number, River Slope, Maximum and Average Relief, Mean Basin Temperature and Precipitation, Watersheds 1-30

			tonnes/year	kilometers	eters ^z	unitless	meter/meter	meters	meters	ပ့	persons-km2
MDEQ Watershed Reference Number	River	USACE Harbor	Watershed Sediment Delivery to the River Outlet	Watershed Area	Watershed Area Basis	Watershed Runoff Curve Number (CN)	River Slope	Relief: Maximum Elevation minus Receiving Water Elevation	Relief: Average Elevation minus Receiving Water Elevation	Annual Mean Basin Temperature	Population Density
~	Au Gres River	Point Lookout Harbor	4,400	629	Contributing	75.0	0.0013	112.6	50.9	7.10	14.3
	Au Sable River	Au Sable Harbor		4,351	Contributing	55.9	0.0008	278.6	164.6	7.35	11.5
2A	Au Sable River	NA; Mio Dam	9,500	2,735	Contributing	51.7	0.0007	177.4	78.9	6.74	11.1
	Belle River	A		588	Contributing	79.1	0.0007	151.3	61.2	7.90	60.5
4 4	Betsie River	Frankfort Harbor		603	Contributing	57.0 64 e	0.0003	186.6 158.6	73.6	7.75	37.3
	big Sable Black River (Fact)	Rlack Rivar	11 000	1 830	Contributing	01.0 76.8	0.0004	131.7	40.9 58 0	0.00	38.0
2	Black River (West)	South Haven Harbor	-	738	Contributing	69.1	0.0007	69.69	28.2	10.20	38.0
	Macatawa River	Holland Harbor	17,000	451	Contributing	75.9	0.0001	57.6	23.1	9.75	256.1
	Boardman	M		572	Contributing	56.1	0.0020	219.6	122.9	7.45	56.3
	Boardman River	NA; Brown Bridge Dam	1,100	311	Contributing	53.3	0.0015	153.3	73.3	7.13	18.8
	Pine River	Charlevoix Harbor		808	Contributing	61.5	0.0020	208.6	83.6	8.25	28.7
-	Cheboygan River	Cheboygan Harbor		3,691	Contributing	61.5	0.0035	295.6	85.9	6.25	12.3
	Clinton River	Clinton River	9,000	2,064	Total	77.5	0.0011	190.0	68.8	8.85	696.1
	Elk River	A		1,035	Contributing	60.3	0.0001	275.6	89.9	5.90	22.1
	Grand River	Grand Haven Harbor	10,000	14,100	Contributing	75.2	0.0003	169.6	77.4	8.80	110.8
14A	Grand River	NA; Webber Dam	19,000	4,501	Contributing	77.0	0.0004	172.4	51.5	8.45	89.8
15	Huron River	A		2,258	Contributing	73.9	0.0006	188.8	101.3	9.10	259.7
_	Huron River	NA; Ford Dam	12,000	2,018	Contributing	73.0	0.0006	154.4	76.2	9.86	248.9
	Kalamazoo River	Saugatuck Harbor		5,260	Total	70.8	0.0006	204.6	87.2	8.40	90.8
18	Kawkawlin River	NA		585	Contributing	79.2	0.0005	60.6	22.1	7.45	76.6
19	Lincoln River	NA		256	Contributing	67.4	0.0008	81.6	33.1	8.00	22.5
	Manistee River	Manistee Harbor		4,349	Contributing	54.1	0.0007	342.6	147.8	8.50	12.3
	Muskegon River	Muskegon Harbor		6,550	Contributing	63.9	0.0005	345.6	149.4	9.10	38.1
23	Oqueoc River	AA AA		370	Contributing	64.6	0.0012	112.6	63.4	7.20	5.3
	Pentwater River	Pentwater Harbor		430	Contributing	60.7	0.0015	128.6	47.1	7.65	20.4
	Pere Marquette River	Ludington Harbor		1,673	Contributing	58.7	0.0011	249.6	92.7	8.00	14.1
	Pigeon River	Caseville Harbor		378	Contributing	80.6	0.0005	74.6	29.2	8.00	16.3
	Pine River	NA		505	Total	77.6	0.0009	80.3	33.8	7.90	56.5
	Platte River	A		360	Contributing	54.1	0.0002	188.6	74.7	7.75	37.8
29	River Raisin	Monroe Harbor	62,000	2,771	Total	79.2	0.0006	199.3	75.6	9.40	65.8
	Rifle River	A		984	Total	67.0	0.0009	279.6	101.2	7.10	16.8

			tonnes/year	kilometers	ers	unitiess	meter/meter	meters	meters	ပ္	persons-km2
MDEQ Watershed Reference Number	River	USACE Harbor	Watershed Sediment Delivery to the River Outlet	Watershed Area	Watershed Area Basis	Watershed Runoff Curve Number (CN)	River Slope	Relief: Maximum Elevation minus Receiving Water Elevation	Relief: Average Elevation minus Receiving Water Elevation	Annual Mean Basin Temperature	Population Density
31	Rouge River	Rouge River	22,000	1,204	Total	81.5	0.0007	131.3	49.4	10.05	1087.3
32	Saginaw River	Saginaw River	190,000	15,882	Contributing	75.5	0.0004	197.6	66.6	7.80	75.7
33	Sebewaing River	Sebewaing River		269	Contributing	78.9	0.0015	67.6	20.6	7.55	18.0
34	St. Joseph River	St. Joseph Harbor	12,000	12,196	Total	72.4	0.0011	195.6	89.9	9.05	81.7
34A	St. Joseph Kiver	NA; Kliey Dam	4,500	1,05,1	Contributing	10.4	0.0008	114.2	7.04	10.01	40. 9
35 36	Stoney Creek Thimder Ray River	NA Alnena Harbor		319 3 116	Contributing	75.7 66.8	0.0006	72.8 วรุธ ธ	33.3 86.7	9.40 6.90	180.4 2.6
37	White River	White Lake Harhor		1 178	Contributing	60.6	0.0012	2046	68.7	9.10	27.5
38	Willow Creek	NA		246	Contributing	79.0	0.0014	82.6	44.9	7.75	5 8 5 0
39	Au Train	NA		285	Contributing	67.4	0.0006	151.6	88.3	6.20	4.2
40	Black River (Gogebic)	Black River Harbor		660	Contributing	77.6	0.0037	366.0	263.4	4.40	7.5
41	Carp River	NA		440	Contributing	72.8	0.0012	127.6	65.6	5.45	1.6
42	Cedar River	Cedar River Harbor		976	Contributing	76.8	0.0013	173.6	66.2	5.45	5.3
43	Chocolay River	NA		399	Contributing	63.5	0.0032	257.6	108.5	6.20	15.1
44	Days River	NA		161	Contributing	69.8	0.0025	145.6	76.1	5.85	16.8
45	Dead River	Presque Isle Harbor		422	Contributing	65.7	0.0045	381.6	269.3	6.20	20.1
46	Escanaba River	NA		2,341	Contributing	65.1	0.0019	372.6	196.9	5.55	8.5
47	Ford River	NA		1,197	Contributing	70.2	0.0013	295.6	150.2	5.55	3.7
48	Falls River	NA		117	Contributing	60.9	0.0053	392.6	212.7	4.80	3.9
49	Manistique River	Manistique Harbor	11,000	3,792	Total	67.7	0.0005	295.6	150.2	5.40	2.5
50	Menominee River	Menominee Harbor	7,300	10,500	Total	68.7	0.0016	371.6	223.4	5.45	6.7
51	Montreal River	NA		669	Contributing	76.8	0.0042	387.2	256.0	3.80	12.6
52	Munuscong River	NA		464	Contributing	75.7	0.0006	135.6	33.2	5.55	13.0
53	Ontonagon River	Ontonagon Harbor	30,000	3,585	Total	71.4	0.0032	382.6	235.7	6.15	2.2
54	Pine River	NA		710	Contributing	71.1	0.0003	127.6	55.8	4.65	3.2
55	Portage River	Keweenaw Waterway		2,572	Total	72.8	0.0015	359.6	155.8	5.15	14.8
56	Presque Isle River	NA		935	Contributing	76.0	0.0020	386.9	284.7	6.15	3.4
57	Rapid River	NA		357	Contributing	71.7	0.0027	173.6	93.3	5.85	3.2
58	Sturgeon River	NA		567	Total	63.4	0.0012	127.6	58.1	5.85	2.8
60	Tahquamenon River	NA		2,095	Total	68.3	0.0002	170.6	61.0	4.15	3.2
61	Two Hearted River	NA		536	Total	66.8	0.0010	166.6	60.7	5.55	1.4
62	Waiska River	NA		383	Total	72.6	0.0013	104.6	36.8	4.65	10.5
63	Whitefish River	NA		811	Contributing	6,9,9	0 0024	202 6	03 2	5 85	41

Table 24. Watershed Area, Curve Number, River Slope, Maximum and Average Relief, Mean Basin Temperature and Precipitation, Watersheds 31-60

meters3/sec	100 year Recurrence Interval Flow	107.6	186.9	133.1	209.5	43.9	39.0 500 4	522.4	147.2	566.3	51.0	28.3	133.1	133.1	192.6	62.3	1,727.3	707.9	339.8	283.2	424.8	169.9	53.8	277.5	509.7	25.5	116.1	138.8	192.6	232.2	31.1	481.4	155.7
meters3/sec	50 year Recurrence Interval Flow	99.1	172.7	124.6	184.1	41.1	0.40	4/6.0	116.1	481.4	48.1	26.9	121.8	127.4	167.1	59.5	1,500.8	623.0	311.5	246.4	368.1	150.1	48.1	263.3	453.1	24.1	104.8	124.6	167.1	201.0	28.3	396.4	141.6
meters3/sec meters3/sec	25 year Recurrence Interval Flow	90.6	164.2	116.1	161.4	39.6	31.1	424.8	93.4	396.4	42.5	24.1	113.3	118.9	135.9	53.8	1,302.6	509.7	260.5	212.4	311.5	130.3	42.5	246.4	396.4	21.2	90.6	113.3	141.6	169.9	25.5	339.8	130.3
meters3/sec meters3/sec	10 year Recurrence Interval Flow	76.5	144.4	104.8	130.3	36.8 25 F	20.0	300.5	1.00	311.5	34.0	21.2	96.3	107.6	101.9	48.1	1,047.7	396.4	203.9	167.1	254.9	107.6	36.8	223.7	339.8	19.8	76.5	96.3	107.6	135.9	22.7	283.2	110.4
meters3/sec	5 year Recurrence Interval Flow	65.1	130.3	96.3	107.6	31.1	21.2	311.5	45.3	235.0	28.3	18.4	85.0	99.1	76.5	42.5	849.5	311.5	150.1	135.9	212.4	87.8	31.1	203.9	277.5	17.0	65.1	82.1	85.0	107.6	19.8	240.7	96.3
meters3/sec meters3/sec meters3/sec	2.0 year Recurrence Interval Flow	51.0	104.8	82.1	73.6	26.9 15.6	0.000	220.9	24.1	144.4	21.2	14.2	65.1	82.1	45.3	34.0	594.7	181.2	99.1	90.6	152.9	62.3	24.1	172.7	203.9	13.6	48.1	59.5	48.1	68.0	15.6	164.2	70.8
meters3/sec	1.5 year Recurrence Interval Flow	42.5	96.3	73.6	59.5	25.5	13.0	180.9	0.71	107.6	18.4	12.7	53.8	76.5	28.3	28.3	481.4	135.9	76.5	73.6	127.4	51.0	21.2	155.7	175.6	12.2	39.6	51.0	34.0	53.8	13.6	135.9	62.3
meters3/sec	Mean Annual River Flow	4.6	42.2	28.0	4.2	8.2	1.C 1.0 E	9.21	7.0L	5.4	8.8	4.5	13.0	37.7	17.6	20.1	127.1	36.0	16.7	17.8	51.5	3.7	2.8	65.7	66.0	3.4	5.1	22.4	2.5	8.5	5.4	22.5	10.2
	USACE Harbor		Au Sable Harbor	NA; Mio Dam	NA	Frankfort Harbor		Black Kiver	South Haven Harbor	Holland Harbor	NA	NA; Brown Bridge Dam	Charlevoix Harbor	Cheboygan Harbor	Clinton River	NA	Grand Haven Harbor	NA; Webber Dam	NA	NA; Ford Dam	Saugatuck Harbor	NA	NA	Manistee Harbor	Muskegon Harbor	NA	Pentwater Harbor	Ludington Harbor	Caseville Harbor	NA	NA	Monroe Harbor	NA
	River	Au Gres River	Au Sable River	Au Sable River	Belle River	Betsie River	Dig Sable	Black River (East)	Black River (West)	Macatawa River	Boardman	Boardman River	Pine River	Cheboygan River	Clinton River	Elk River	Grand River	Grand River	Huron River	Huron River	Kalamazoo River	Kawkawlin River	Lincoln River	Manistee River	Muskegon River	Oqueoc River	Pentwater River	Pere Marquette River	Pigeon River	Pine River	Platte River	River Raisin	Rifle River
	MDEQ Watershed Reference Number	~	2	2A	ю	4 4	о (1 0	~ 0	ω	6	9A	10	11	12	13	14	14A	15	15A	17	18	19	20	22	23	24	25	26	27	28	29	30

Table 25. Mean Annual River Flow and Recurrence Interval Flows, Watersheds 1-30

			matare3/cor matare3/cor matare3/cor	matare 2/cor	matare 2/coc	matare 3/cor	matare 3/cor	matare 2/car	matare3/cor matare3/cor	motore 3/cor
MDEQ Watershed				1.5 year	2.0 year	5 year	10 year	25 year	50 year	100 year
Reference Number	River	USACE Harbor	Mean Annual River Flow	Recurrence Interval Flow	Recurrence Interval Flow	Recurrence Interval Flow	Recurrence Interval Flow	Recurrence Interval Flow	Recurrence Interval Flow	Recurrence Interval Flow
31	Rouge River	Rouge River	8.8	85.0	116.1	206.7	283.2	396.4		594.7
32	Saginaw River	Saginaw River	124.9	764.6	877.8	1,161.0	1,330.9	1,557.4	1,699.0	1,868.9
33	Sebewaing River	Sebewaing River	1.6	53.8	65.1	93.4	113.3	138.8	158.6	175.6
34	St. Joseph River	St. Joseph Harbor	132.5	311.5	368.1	453.1	509.7	566.3	623.0	651.3
34A	St. Joseph River	NA; Riley Dam	13.3	36.8	42.5	59.5	73.6	87.8	99.1	110.4
35	Stoney Creek	A	2.4	19.8	25.5	42.5	53.8	70.8	82.1	104.8
36	Thunder Bay River	Alpena Harbor	24.1	107.6	138.8	218.0	274.7	339.8	396.4	453.1
37	White River	White Lake Harbor	16.7	45.3	56.6	85.0	107.6	135.9	158.6	184.1
38	Willow Creek	M	1.8	31.1	39.6	56.6	70.8	90.6	101.9	116.1
39	Au Train	M	4.0	11.3	14.2	24.1	31.1	39.6	45.3	51.0
40	Black River (Gogebic)		8.5	99.1	127.4	201.0	260.5	339.8	424.8	509.7
41	Carp River	M	4.0	70.8	76.5	85.0	93.4	101.9	107.6	110.4
42	Cedar River	Cedar River Harbor	7.6	48.1	59.5	85.0	101.9	124.6	141.6	161.4
43	Chocolay River	NA	10.8	36.8	45.3	68.0	82.1	101.9	116.1	130.3
44	Days River	NA	1.0	12.5	15.6	22.7	28.3	34.0	39.6	45.3
45	Dead River	Presque Isle Harbor	5.7	34.0	39.6	51.0	56.6	68.0	73.6	82.1
46	Escanaba River	NA	24.6	144.4	169.9	229.4	266.2	311.5	339.8	368.1
47	Ford River	NA	10.5	70.8	82.1	110.4	127.4	150.1	164.2	181.2
48	Falls River	A	1.2	15.6	18.4	25.5	31.1	36.8	42.5	48.1
49	Manistique River	Manistique Harbor	51.5	198.2	235.0	311.5	368.1	453.1	509.7	566.3
50	Menominee River	Menominee Harbor	101.4	339.8	396.4	538.0	651.3	792.9	906.1	1,019.4
51	Montreal River	M	9.3	73.6	90.6	138.8	172.7	220.9	254.9	283.2
52	Munuscong River	NA	5.7	73.6	82.1	101.9	118.9	135.9	147.2	158.6
53	Ontonagon River	Ontonagon Harbor	39.4	249.2	311.5	509.7	623.0	792.9	934.5	1,076.0
2	Pine River	NA	8.5	82.1	93.4	124.6	144.4	169.9	186.9	203.9
55	Portage River	Keweenaw Waterway	40.5	175.6	201.0	266.2	311.5	339.8	396.4	424.8
56	Presque Isle River	NA	10.8	76.5	90.6	121.8	141.6	164.2	181.2	198.2
57	Rapid River	NA	1.2	34.0	39.6	53.8	62.3	73.6	82.1	93.4
58	Sturgeon River	NA	6.2	31.1	36.8	45.3	53.8	59.5	65.1	70.8
60	Tahquamenon River	NA	26.9	113.3	127.4	158.6	178.4	198.2	215.2	229.4
61	Two Hearted River	NA	9.1	34.0	39.6	56.6	70.8	87.8	101.9	118.9
62	Waiska River	NA	5.9	48.1	56.6	76.5	87.8	104.8	116.1	127.4
63	Whitefish River	A	8.8	65.1	79.3	107.6	127.4	152.9	172.7	192.6

Table 26. Mean Annual River Flow and Recurrence Interval Flows, Watersheds 31-60

		5	011 Nation	al Land Co	ver Databas	2011 National Land Cover Database (USDA, 2011)	11)		EGLE (1	EGLE (1978) MIRIS Land Cover Database	nd Cover Da	Itabase
	percent	t percent	percent	percent	percent	percent	percent	percent	percent	percent	percent	percent
و ق	Surface								Surface	Reservoir Pool Surface Area (EGLE,	Total Aquatic	Total Upland
1 Au Gres River	2.22%	Developed 6.63%	Barren 0.42%	Forest 35.40%	Shubland 1.99%	Grassland 5.71%	Agriculture 24.44%	Wetlands 23.19%	0.82%	2020)	Wetlands	Wetlands
2 Au Sable River	1.98%		0.10%	55.89%	9.97%	7.55%	3.28%	12.75%	0.77%	0.72%	0.71%	3.43%
2A Au Sable River	1.58%		0.11%	54.48%	12.68%	9.18%	1.72%	11.47%	1.22%	0.15%	0.75%	3.10%
	0.40%		0.31%	19.12%	0.34%	1.49%	57.17%	10.16%	0.17%	0.07%	0.39%	1.13%
4 Betsie River 5 Bio Sable	9.63% 5.05%	8.59% 5.20%	0.15% 0.87%	44.71% 51.49%	3.09% 2.97%	11.44% 4.96%	7.41% 11.65%	14.98% 17.81%	9.19% 0.89%	0.80% 4.51%	1.21% 1.52%	7.75% 2.92%
			0.26%	13.35%	0.28%	1.11%	68.50%	8.09%	0.10%	0.03%	0.25%	3.38%
			0.21%	24.48%	0.56%	3.88%	43.97%	16.85%	1.40%	0.06%	0.42%	1.35%
	r 1.80%		0.83%	7.48%	0.19%	0.90%	50.78%	3.94%	1.96%	0.00%	0.13%	0.71%
	2.25%	12.56%	0.20%	44.05%	6.16%	14.21%	9.79%	10.78%	1.18%	0.52%	0.34%	1.47%
9A Boardman River	- 0.89%		0.14%	48.02%	8.00%	16.35%	5.31%	12.71%	0.34%	0.25%	0.53%	0.99%
			0.22%	47.59%	1.37%	7.22%	15.20%	12.18%	8.99%	0.08%	0.27%	1.71%
		4	0.12%	47.82%	4.90%	8.15%	6.78%	19.55%	2.81%	3.59%	0.57%	2.74%
	2.69%		0.65%	13.62%	0.16%	1.10%	18.32%	7.85%	1.16%	0.90%	0.91%	1.89%
	11.39%	_	0.18%	44.46%	2.58%	11.29%	14.74%	7.45%	10.65%	0.54%	0.39%	1.33%
	1.54%		0.38%	16.65%	0.25%	0.93%	53.45%	12.00%	0.87%	0.34%	0.81%	2.94%
	1.18%		0.33%	12.67%	0.14%	0.46%	59.10%	13.42%	0.54%	0.62%	1.24%	5.36%
	4.15%	_	0.70%	21.83%	0.19%	1.15%	24.32%	14.83%	1.17%	2.23%	2.15%	4.87%
7			0.71%	22.37%	0.20%	1.12%	24.69%	15.60%	1.75%	1.97%	2.33%	5.14%
			0.45%	21.44%	0.39%	1.36%	48.01%	12.39%	1.36%	0.50%	1.10%	4.28%
			0.20%	19.95%	1.02%	2.84%	46.18%	16.14%	0.17%	0.29%	0.95%	3.09%
	2.39%		0.10%	33.21%	2.83%	9.58%	21.19%	15.83%	2.51%	0.01%	1.29%	3.66%
		5.98%	0.15%	55.39%	5.15%	11.30%	9.01%	11.67%	0.82%	0.38%	0.69%	4.60%
			%LZ.0	39.41% 44.040	3.07%	0.91%	19.54%	18.03%	Z-95%	0.79%	1.13%	4.03%
			%nz.n	41.34%	%00.c	0.91%	0.83%	32.95%	1.34%	0.47%	0.54%	3.30%
			0.22%	32.07%	1.90%	9.73%	34.07%	13.37%	0.86%	0.25%	0.75%	1.68%
			0.09%	57.01%	3.57%	5.26%	12.27%	14.53%	1.18%	0.07%	0.63%	3.11%
	0.19%		0.05%	5.02%	0.07%	0.41%	81.79%	6.28%	0.03%	0.00%	0.05%	1.41%
27 Pine River	0.42%	11.08% 6.60%	0.25%	32.49% 53 82%	0.55%	2.70%	44.96% 0 17%	7.55% 8.00%	0.20%	0.02%	0.05%	0.47%
	1.01/0		% 67.0 /000 0	0/ 20.00	2.12/0	0/ 12:21	3.11 /0 67 040/	0.03 /0	3.01%	0.01 %	0.60%	2.41 /0 1 510/
	% OC 1		0.30%	0.00%	0.12.0	0.00.0	0/ 101 /04	%0.00	0.40.1	0.41 %	0.09%	0/ I C· I
30 Kitle Kiver	1.46%	8.98%	0.13%	42.90%	3.50%	6./4%	11.44%	18.84%	0.92%	0.41%	0.32%	2.97%

Table 27. Watershed Land Use, 2011 NLCD and EGLE (1978) MIRIS Land Use, Watersheds 1-30

Table 28. Watershed Land Use, 2011 NLCD and EGLE (1978) Land Use, Watersheds 30-60

		20	011 Nation	al Land Co	ver Databas	2011 National Land Cover Database (USDA, 2011)	11)		EGLE (19	EGLE (1978) MIRIS Land Cover Database	id Cover Da	tabase
	percent	percent	percent	percent	percent	percent	percent	percent	percent	percent	percent	percent
MDEQ Watershed Reference Number	Surface	Portologi	Barron	T T T T		Greecland	Anriouthurs	Wottande	Surface Wator	Reservoir Pool Surface Area (EGLE,	Total Aquatic Motlande	Total Upland
Rouge F	0.90%	84 13%	0.37%	6 45%	0.07%	0 46%	5 00%	2 64%	0 78%			0.84%
	1.38%	12.73%	0.27%	22.61%	1.13%	2.83%	45.19%	13.86%	0.32%	0.62%	0.80%	3.13%
33 Sebewaing River	0.02%	6.28%	0.10%	3.64%	0.05%	0.34%	88.45%	1.13%	0.04%	0.00%	0.00%	0.22%
	2.34%	13.73%	0.24%	11.36%	0.28%	0.97%	58.66%	12.42%	1.54%	0.62%	1.25%	3.21%
34A St. Joseph River	2.40%	9.87%	0.22%	11.47%	0.20%	0.54%	60.54%	14.77%	1.47%	0.77%	0.97%	1.97%
	0.40%	19.45%	0.64%	16.40%	0.17%	1.34%	53.70%	7.90%	0.09%	0.02%	0.18%	0.36%
	3.13%	6.01%	0.09%	42.65%	3.01%	5.75%	10.45%	28.90%	0.52%	1.55%	0.79%	4.58%
	1.35%	5.98%	0.15%	55.39%	5.15%	11.30%	9.01%	11.67%	1.64%	0.10%	0.56%	2.22%
-	0.08%	5.75%	0.08%	9.10%	0.12%	0.74%	74.92%	9.22%	0.03%	0.00%	0.24%	4.80%
39 Au Irain 40 Ploat Picor (Cocobic)	3.38%	3.19% 2.54%	0.06%	68.32%	1.23%	1.30%	7.70%	19.30%	1.56%	2.16%	0.37%	4.15%
40 black Kivel (Gogeuic) 41 Carn River	0.00%	0.04% 010%	0.04%	01.90% 36 88%	0.03%	1.43% 1.03%	2.13% 0.07%	%7C.07	0.30% 1 79%	0.47%	0.24%	4.23%%
	0.49%	4.36%	0.23%	28.27%	1.65%	2.23%	9.58%	53.19%	0.45%	%00 ^{.0}	1.82%	5.42%
43 Chocolay River	0.85%	5.61%	0.29%	65.15%	1.35%	4.10%	2.40%	20.26%	0.51%	0.17%	0.65%	2.86%
	0.15%	4.20%	0.04%	37.44%	2.92%	1.29%	2.97%	51.00%	0.25%	0.01%	0.26%	6.71%
	4.83%	4.06%	0.49%	68.06%	2.70%	3.69%	0.02%	16.15%	0.91%	3.92%	1.67%	5.02%
	2.28%	3.97%	1.82%	44.34%	4.80%	4.28%	2.54%	35.97%	1.01%	0.17%	1.94%	7.39%
4/ Ford Kiver 48 Falls River	0.27%	2.97% 4 98%	0.13% 0.15%	39.73% 82.13%	2.89% 1 87%	2.86% 2.39%	4.12% 0.85%	47.02% 6 97%	0.16% 0.39%	0.03%	0.34%	4./3% 1.84%
	4.49%	2.92%	0.11%	37.37%	3.56%	4.17%	0.96%	46.41%	1.81%	2.98%	10.26%	9.16%
50 Menominee River	2.95%	3.90%	0.14%	53.46%	1.97%	2.40%	4.32%	30.86%	0.77%	1.49%	1.21%	6.38%
51 Montreal River	3.30%	5.49%	0.12% 4.07%	58.51%	2.36% 4.66%	1.37%	4.34%	24.52%	3.16%	0.14%	0.04%	4.11%
	0.12/0	0. 12 /0 2 60%	0/ 10.1	%00.62 %00.09	0.00%	1 19%	3 45%	17 42%	0.01 /0	0.30%	0.81%	3 52%
	0 14%	3.58%	0 12%	39 43%	4 12%	4 15%	%02.6	39.26%	0.04%	0 14%	5 18%	4 91%
55 Portage River	3.49%	3.83%	0.27%	64.01%	1.89%	1.85%	5.61%	19.05%	3.05%	0.36%	1.28%	5.86%
	5.13%	2.74%	0.03%	64.02%	0.51%	0.42%	0.05%	27.10%	1.10%	0.46%	0.43%	4.91%
57 Rapid River	0.13%	2.92%	0.07%	37.00%	1.56%	1.11%	3.11%	54.11%	0.09%	0.04%	0.99%	6.46%
	2.77%	2.49%	0.34%	43.12%	2.29%	1.88%	0.19%	46.92%	2.31%	0.62%	3.10%	12.19%
	0.89%	2.33%	0.07%	35.19%	1.99%	2.79%	0.72%	56.02%	0.77%	0.24%	3.64%	10.34%
	0.88%	2.08%	0.03%	42.18%	4.24%	3.20%	0.00%	47.39%	1.17%	0.00%	6.83%	8.80%
62 Waiska River	0.10%	5.51%	0.25%	35.92%	3.93%	5.11%	16.80%	32.39%	0.05%	0.07%	2.77%	8.08% r 00%
63 Whitetish Kiver	0.36%	2.37%	0.23%	44.14%	2.34%	2.16%	3.64%	44./4%	0.45%	0.02%	2.25%	9.09%

118

The dependent and independent variables for each of the 60 watersheds and five sub-watersheds are shown on Table 23, Table 24, Table 25, Table 26, Table 27, and Table 28. With respect to watershed sediment delivery estimates of 12 watersheds where fluvial sediment delivery is based on USACE dredging data, these watersheds are highlighted in green. A yellow highlight identifies the five sub-watersheds where fluvial sediment delivery is based on ¹³⁷Cs and ²¹⁰Pb radiometric dating. Each of the four sets of stepwise regression analyses are further discussed in the following text.

4.1 Assessment of Watershed Variables in Conjunction with the Prediction of Mean Annual River Flow and Selected Recurrence Interval Flows

Due to their significant importance on watershed sediment transport, the initial focus of the regression analyses was the determination of watershed characteristics important to the prediction of mean annual river flow and recurrence interval flows. The mean annual river flow and recurrence interval flows were evaluated for the 60 watersheds relative to the following watershed characteristics: watershed curve number, maximum watershed relief, river slope, average annual Great Lake basin precipitation and temperature, and the percentage of the watershed covered by seven NLCD (2011) land use classifications (water, developed land, barren land, shrubland, grassland, agriculture and wetlands).

4.1.1 Relationship Between River Slope and Watershed Area

The relationship between river slope and watershed area is shown on Figure 38. The average slope of these 60 Michigan rivers is 0.0013 meter/meter. As expected, there is higher variability in river slopes among smaller watersheds, and the average slope of the watershed decreases as watershed area increases (see Figure 38).

Thirty-six of the 60 Michigan watersheds evaluated in this research have watershed areas less than 1,000 square kilometers; for these 36 watersheds, the average river slope is 0.00155 meter/meter with a standard deviation of 0.00128 meter/meter. The average slope (and standard deviation) of rivers with watershed areas ranging from 1,000 to 4,000 square kilometers is 0.00117 meter/meter (0.00098 meter/meter) and the average slope of rivers with watershed areas greater than 4,000 square kilometers is 0.00076 meter/meter (0.00041 meter/meter). As shown in Figure 38, the average river slope and standard deviation decrease as watershed area increases.

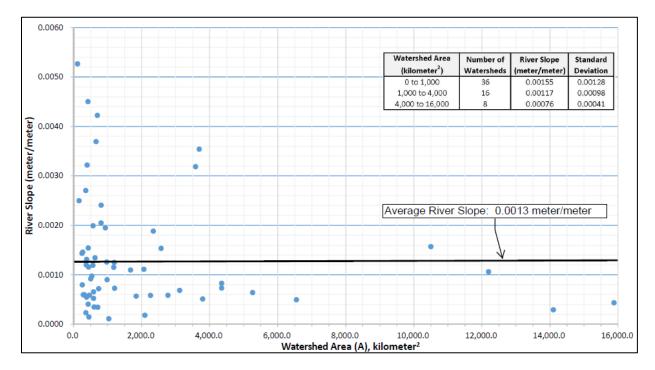


Figure 38. Relationship Between River Slope and Watershed Area

4.1.2 Watershed Curve Number

The area weighted watershed curve number for these 60 Michigan watersheds is 69.9, and the area weighted watershed curve numbers for the Michigan rivers that drain to Lake Superior, Lake Michigan, Lake Huron, and Lake Erie are 71.1, 68.2, 70.0, and 77.5, respectively (see Table 23 and Table 24). With the exception of the Lake Erie watershed, the Lake Superior, Lake Michigan, and Lake Huron watersheds are dominated by forest land, wetlands, and agriculture. The relative differences in the area-weighted watershed curve numbers for these Great Lakes watersheds are explained by land use and soil classification. Approximately half of the 60 Michigan watersheds evaluated in this research contain over 40% forest land and the average watershed area 60 Michigan watersheds. Of the 60 watersheds evaluated, the average watershed area contains 21.5% agricultural land use and 21.9% wetlands. Thirty-four of the 60 Michigan watersheds included in this research contain greater than 15% wetlands.

Urban land use (identified as "Developed" in Table 27 and Table 28) constitutes an important percentage of watershed area for basins where Michigan's largest cities are located. The watershed with the highest percentage of urban development is the Rouge River within the City of Detroit (84.1%) with a watershed CN of 81.5 (Table 11). Other examples of watersheds that contain an elevated percentage of urban land use include the Macatawa River watershed (34.1%; near the City of Holland, Michigan) with a watershed CN of 75.9; the Clinton River watershed (55.6%; north of the City of Detroit) with a watershed CN of 77.5; the Huron River watershed (32.8%; west and south of the City of Detroit) with a watershed CN of 73.9; and the Saginaw River watershed (12.7%; encompassing the cities of Flint, Saginaw, and Bay City) with a watershed CN of 75.5.

The rivers that drain the Lake Erie watershed have an area weighted watershed CN of 77.5 (Table 11) that is reflected in the elevated percentages of urban land use within this basin; these rivers and watershed reference number include: Stoney Creek (35), the Pine River (27), the Belle River (3), the Rouge River (31), the Black River-East (6), the Clinton River (12), the Huron River (15), and the River Raisin (29). The watersheds for these eight rivers cover 11,549 square kilometers. The area weighted watershed CN of 77.5 was calculated from 383,577 polygons with an average polygon area of 0.035 square kilometers (Table 11). The watersheds of these eight rivers drain extensive urban areas stretching from the City of Port Huron located on the north end of the St. Clair River (Black River-East watershed; 6), including the City of Detroit, and extending to the south to the City of Monroe (River Raisin watershed; 29) located on western edge of Lake Erie (see Figure 4).

As shown on Table 27 and Table 28, the watersheds draining to Lake Superior, Lake Michigan, and Lake Huron have land use dominated by forest land, wetland, and agriculture. Excluding the urbanized Lake Erie watershed, the watershed CNs for the Lake Superior watershed (71.1), Lake Michigan watershed (68.2), and Lake Huron watershed (70.0) are similar. Figure 39 represents a comparison of watershed CN and watershed area for all 60 Michigan rivers. Unlike river slope, there is no significant relationship between watershed CN and watershed area.

122

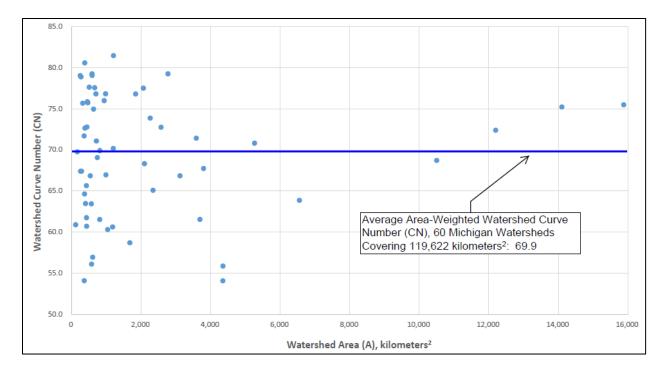


Figure 39. Relationship Between Watershed Curve Number and Watershed Area

Mean annual discharge or runoff per unit area is calculated by dividing the total mean annual river flow by the watershed area and these values are presented in Table 8, Table 9, Table 10, Table 11, and Table 12. The mean annual river flow is comprised of both surface water runoff and indirect groundwater discharge to rivers that drain the watershed. Due in large part to Michigan's glacial history, many rivers are located in permeable glacial outwash deposits and coarse textured glacial deposits (Farrand WR and Bell DL, 1982) and mean annual discharge of many Michigan rivers is composed primarily of groundwater (USGS, 2005). Based on a study of Great Lake basin water supply, USGS (1998) found that 22% to 42% of water entering the individual Great Lakes originated as indirect groundwater discharge from the rivers that drain the watershed and that overland surface water runoff ranged from 9% to 24% (the balance consists of over lake precipitation).

With respect to the individual Great Lakes, water entering Lake Superior was comprised of 11% surface water runoff and 33% indirect groundwater discharge, and the balance (56%) consisted of over lake precipitation (USGS, 1998). With respect to water entering Lake Michigan, Lake Huron, and Lake Erie, surface water runoff represents 9%, 16%, and 24% while indirect groundwater discharge from rivers represents 35%, 42%, and 22%, respectively (USGS, 2009). Using the hydrograph separation method at 195 gaging stations, USGS (1998) found that the majority of mean annual river flow is comprised of indirect groundwater discharge within the Lake Superior watershed (75%), Lake Michigan watershed (79%), and Lake Huron watershed (72%), while indirect groundwater flow represented about half (48%) in the Lake Erie basin. These data support the Great Lake watershed CNs discussed previously, where the rivers that drain the Lake Erie watershed have an area weighted watershed CN of 77.5 that is reflected in the elevated percentages of urban land use within this basin. The area weighted watershed CNs for the Michigan rivers that drain the Lake Superior watershed (71.1), Lake Michigan watershed (68.2), and Lake Huron watershed (70.0) reflect land use dominated by forest land, wetland, and agriculture.

4.1.3 Regression Analysis, Mean Annual River Flow and Recurrence Interval Flows v. Fourteen Watershed Characteristics

Previous research has confirmed a strong relationship between the prediction of mean annual river flow and watershed area in Michigan rivers. With respect to the 60 Michigan rivers included in this research, Barkach JH et al. (2020) found that the prediction of mean annual river flow is strongly correlated to watershed area with an R² of 0.95 (see Figure 40).

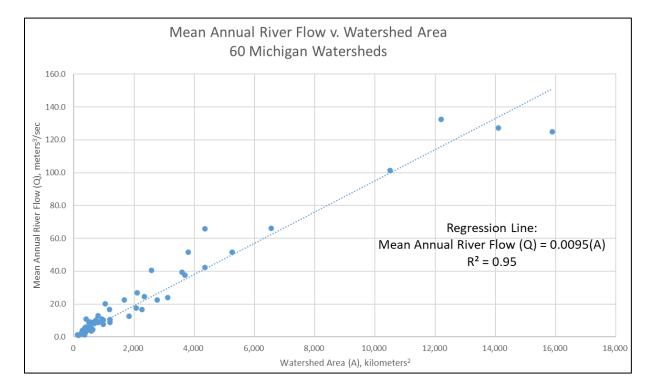


Figure 40. Relationship Between Mean Annual River Flow and Watershed Area (Barkach JH et al, 2020)

A recent study prepared for the State of Michigan's EGLE (Stantec, 2014) found a similar strong relationship between watershed area and mean annual river flow for 28 southern Michigan watersheds ranging in size from 24.8 square kilometers to 1,412 square kilometers with correlation coefficients ranging from 0.84 to 0.94. Syvitski and Milliman (2007) also found a strong correlation between mean annual river flow and watershed area with respect to the 488 rivers in their global database that cover 63% of the Earth's surface; their analysis of variables associated with watershed sediment delivery found the highest correlates to mean annual river flow (Q) were watershed area $(R^2=0.75)$ and relief ($R^2=0.25$).

In conjunction with this research, other watershed characteristics were evaluated relative to the prediction of mean annual river flow and selected recurrence interval flows. These additional characteristics include: watershed CN, maximum watershed relief, river slope, mean precipitation and basin temperature of the four Great Lake watersheds, and the percentage of the watershed covered by the following NLCD (USDA, 2011) land use categories: water, developed land, barren land, shrubland, grassland, agriculture and wetlands.

An example regression of all 14 independent variables versus 2-year recurrence interval flow is shown on Table 29. Review of Table 29 reveals that most important watershed characteristics with respect to the prediction of the 2-year recurrence interval flow is watershed area (A) and watershed curve number (CN) with P-values of 1.9 E-19 and 0.018 respectively. In conjunction with the step-wise regression analyses, watershed characteristics that were not predictive of 2-year recurrence interval flow include: maximum watershed relief, river slope, mean precipitation and temperature of the four Great Lake watersheds, and the percentage of the watershed covered by water, developed land, barren land, shrubland, grassland, agriculture and wetlands based on the 2011 NLCD (USDA, 2011). The importance of the watershed area and watershed curve number as independent variables was repeated for all of the recurrence intervals that were evaluated during this research, these include: 1.5-year, 2.0-year, 10-year, 25-year, 50-year and 100-year.

Regression Stat	istics
Multiple R	0.947
R Square	0.897
Adjusted R Square	0.865
Standard Error	53.244
Observations	60

Table 29.	Example Red	ression. 2-vea	^r Recurrence	Interval Flow v.	All Variables
		· · · · ,			

ANOVA

	df	SS	MS	F	Significance F
Regression	14	1112451.78	79460.84	28.03	1.36189E-17
Residual	45	127572.35	2834.94		
Total	59	1240024.13			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	954.970	1576.085	0.606	0.548	-2219.428	4129.369	-2219.428	4129.369
Watershed Area (kilometers ²)	0.041	0.003	15.299	1.9E-19	0.036	0.047	0.036	0.047
Watershed Curve Number (CN)	5.774	2.360	2.447	0.018	1.021	10.526	1.021	10.526
Relief (meters)	-0.039	0.138	-0.280	0.781	-0.317	0.240	-0.317	0.240
River Slope (m/m)	-9447.030	9444.078	-1.000	0.323	-28468.380	9574.321	-28468.380	9574.321
Precipitation, NOAA, 2015 (mm/year)	0.346	0.909	0.381	0.705	-1.485	2.176	-1.485	2.176
Mean Watershed Temp., NOAA, (°C)	-10.852	17.335	-0.626	0.534	-45.765	24.062	-45.765	24.062
Water	-1846.526	1467.528	-1.258	0.215	-4802.280	1109.228	-4802.280	1109.228
Developed	-1615.885	1438.057	-1.124	0.267	-4512.280	1280.510	-4512.280	1280.510
Barren	1488.385	2949.461	0.505	0.616	-4452.134	7428.904	-4452.134	7428.904
Forest	-1428.055	1405.863	-1.016	0.315	-4259.609	1403.500	-4259.609	1403.500
Shubland	-2115.046	1598.591	-1.323	0.192	-5334.773	1104.682	-5334.773	1104.682
Grassland	-1129.028	1600.757	-0.705	0.484	-4353.118	2095.063	-4353.118	2095.063
Agriculture	-1592.338	1440.806	-1.105	0.275	-4494.269	1309.593	-4494.269	1309.593
Wetlands	-1586.215	1451.630	-1.093	0.280	-4509.949	1337.519	-4509.949	1337.519

With respect to mean annual river flow, the most important variables were watershed area followed by watershed curve number and maximum watershed relief. An example regression of mean annual river flow to watershed area, watershed curve number, maximum watershed relief and river slope is shown on Table 30. Watershed characteristics that were not predictive of mean annual river flow include: river slope, mean precipitation and temperature of the four Great Lake watersheds, and the percentage of the watershed covered by water, developed land, barren land, shrubland, grassland, agriculture and wetlands based on the NLCD (USDA, 2011).

Table 30. Example Regression, Mean Annual River Flow v. Watershed Area, Watershed
CN, Maximum Relief, and River Slope

Regression Statistics						
Multiple R	0.983865					
R Square	0.96799					
Adjusted R Square	0.965662					
Standard Error	5.767229					
Observations	60					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	55319.25	13829.81	415.797523	2.17137E-40	
Residual	55	1829.351	33.26093			
Total	59	57148.6				
(Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%
Intercept	14.92415	8.39374	1.778009	0.08093047	-1.897282355	31.74557866
Watershed Area (kilometers ²)	0.008908	0.000256	34.79334	3.86E-39	0.00839455	0.009420682
Watershed Curve Number (CN)	-0.22676	0.11093	-2.04414	0.0457	-0.449066802	-0.00444823
Relief (meters)	0.027358	0.01052	2.60043	0.012	0.00627422	0.048440988
River Slope (m/m)	-1348.99	860.3654	-1.56792	0.123	-3073.196706	375.224992

Based on regression analysis, the relationship between mean annual river flow (Q_m) as a function of watershed area, watershed CN, and relief is presented in Equation 1 ($R^2 = 0.97$).

Mean Annual River Flow $(Q_m) = 17.3 + 0.0091(A) - 0.2608(CN) + 0.017(R)$ (19) where,

A = watershed area, square kilometers

CN = watershed CN, unitless

R = maximum watershed relief, meters

As shown in Figure 41, the addition of watershed CN and maximum relief (R) to watershed area (A) marginally improves the prediction of mean annual river flow and the

resulting R^2 is 0.97 in comparison to mean annual river flow as a function of only watershed area ($R^2 = 0.95$ see Figure 40)

With respect to prediction of recurrence interval flows (1.5-year, 2.0-year, 10-year, 25-year, 50-year, and 100-year), the regression equation variable analysis and the P-values associated with watershed area, watershed CN, relief, and river slope are presented in Table 31. The most important variables are watershed area and watershed CN, and the R² of the resulting regression equations ranges from 0.87 (1.5-year and 2.0-year recurrence interval flow) to 0.80 (100-year recurrence interval flow). The strong R² of the predicted versus actual 2-year and 10-year recurrence interval flows as a function of watershed area (A) and watershed CN are shown in Figure 42 and Figure 43, respectively. As shown in Table 31, with respect to the prediction of mean annual river flow as well as the recurrence interval flows, the dominant watershed characteristic is watershed area.

Table 31. Summary of Regression Equation Intercept and Coefficients, Mean Annual River Flow and Recurrence Interval Flows

	Regressi	Regression Equation	Regressi	Regression Equation Intercept and Coefficients	itercept and C	oefficients	-	P-Values: Regression Equation Variable Analysis	sion Equation	Variable Ana	Ilysis
					Watershed						
				Watershed	Curve	Watershed			Watershed		
				Area	Number	Relief		Watershed	Curve	Watershed	
				Coefficient	Coefficient	Coefficient		Area	Number	Relief	River Slope
Flow Rate	R Square	R Square Significance F	Intercept	(kilometers ²)	(CN)	(meters)	Intercept	(kilometers ²)	(CN)	(meters)	(meter/meter)
Mean Annual River Flow	0.97	2.85E-41	17.3	0.00	-0.261	0.017	8.09E-02	3.86E-39	4.57E-02	0.01	0.12
1.5-Year Exceedance Flow	0.87	6.38E-26	-143.1	0.034	2.408		7.67E-03	7.93E-23	2.41E-03	0.31	0.82
2.0-Year Exceedance Flow	0.87	1.86E-26	-192.7	0.040	3.211		2.55E-03	2.95E-23	6.04E-04	0.30	0.84
10-Year Exceedance Flow	0.85	4.89E-24	-409.3	0.062	6.751		3.50E-04	1.07E-20	6.03E-05	0.21	0.80
25-Year Exceedance Flow	0.83	1.04E-22	-535.1	0.074	8.786		2.82E-04	2.34E-19	4.73E-05	0.22	0.85
50-Year Exceedance Flow	0.82	6.77E-22	-641.0	0.082	10.512		1.76E-04	1.68E-18	2.85E-05	0.19	0.83
100-Year Exceedance Flow	0.80	7.64E-21	-759.4	0.091	12.417		1.82E-04	2.04E-17	2.96E-05	0.21	0.83

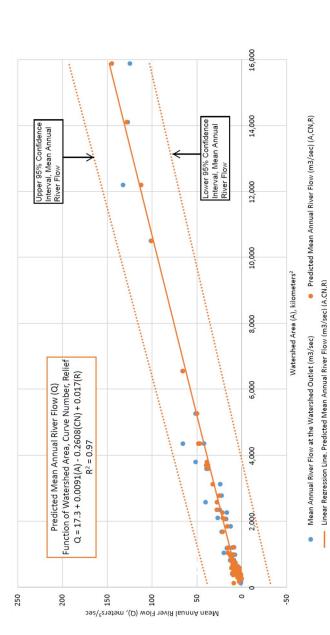
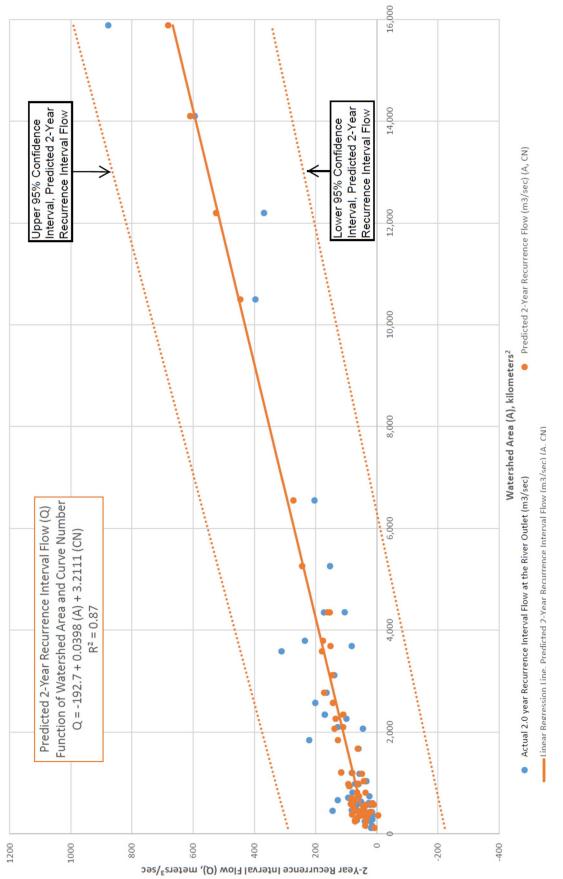
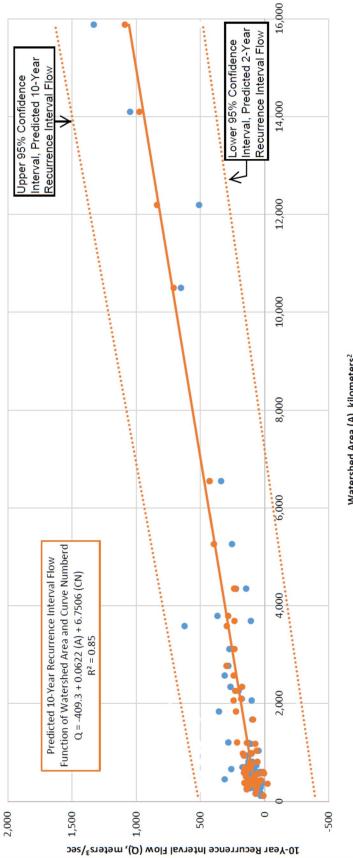




Figure 41. Predicted v. Actual Mean Annual River Flow, Predicted Flow is a Function of Watershed Area (A), Curve Number (CN), and Maximum Relief (R)

Watershed Area (A), kilometers²

- 10-year Recurrence Interval Flow at the River Outlet (m3/sec) •
- Predicted 10-Year Recurrence Interval Flow (m3/sec) (A, CN) •
- Linear Regression Line, Predicted 10-Year Recurrence Interval Flow (m3/sec) (A, CN)

Figure 43. Predicted v. Actual 10-Year Recurrence Interval Flow, Predicted Flow is a Function of Watershed Area (A) and Curve Number (CN) Watershed area has been referred to as the "great integrator" (Syvitski and Kettner, 2008). The complex glacial geology of Michigan and the resulting low gradient streams, as well as the low percentage of developed land in the majority of 60 watersheds evaluated in this research, likely explains why there is a strong correlation between the mean annual river flow to watershed area, watershed CN, and relief (see Figure 41). With respect to the 1.5-year, 2.0-year, 10-year, 25-year, 50-year, and 100-year recurrence interval flows, the R² of the regression equations for these 60 Michigan rivers as a function of watershed area and watershed CN ranged from 0.80 to 0.87 (see Table 31). As shown in Figure 42 and Figure 43 and summarized in Table 31, preliminary estimates of recurrence interval flows can be reasonably determined from two variables, watershed area and watershed CN, with respect to the prediction of recurrence interval flows.

4.2. Regression Set 1, Analysis of Watershed Variables in Conjunction with Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Non-Transformed Dependent and Independent Variables, 12 Watersheds

To identify predictor variables, the second set of regressions focused on nontransformed watershed sediment delivery estimates (dependent variable) and 15 watershed characteristics (independent variables). In this set of regressions, the dependent variable is watershed sediment delivery estimates to the river outlet based on USACE-Detroit District dredging data (12 rivers; see Table 17). The following 15 independent variables were considered, they include:

• Watershed Area (square kilometer)

- Percent of Watershed, Total Surface Water Area (EGLE, 1978) MIRIS Land Use
- Percent of Watershed, Total Reservoir Pool Surface Area, EGLE (2020) Dam Inventory
- Percent of Watershed, Total Aquatic Wetlands (EGLE, 1978) MIRIS Land Use
- Percent of Watershed, Total Upland Wetlands (EGLE, 1978) MIRIS Land Use
- Mean Annual River Flow (cubic meters/second)
- 1.5-year Recurrence Interval Flow (cubic meters/second)
- 2.0-year Recurrence Interval Flow (cubic meters/second)
- 5-year Recurrence Interval Flow (cubic meters/second)
- Watershed Curve Number (unitless)
- River Slope (meter/meter)
- Relief: Net Watershed Elevation Difference, Maximum Watershed Elevation (meter)
- Relief: Net Watershed Elevation Difference, Average Watershed Elevation (meter)
- Mean Basin Temperature (°C)
- Population Density (people/square kilometer)

Review of the correlation coefficients (Table 32) reveals the strong relationship between watershed area and mean annual river flow and recurrence interval flows discussed in the Section 4.1. The correlation coefficients between watershed area and mean annual river flow, 1.5-year, 2-year, and 5-year recurrence intervals is 0.98, 0.92, 0.92, and 0.90. In addition, as expected, there is also a strong correlation (0.63) between maximum watershed relief and river slope.

A Contraction of the second se	Surface	Reservoir	Total	Total	Mean	1.5-year	2.0-year	5-year	Watershed		Relief:	Relief:		
w k	Water	Pool Surface	Aquatic Wetlands	Upland Wetlands	Annual River Flow	Recurrence Flow		Recurrence Recurrence Flow Flow		River Slope	Maximum Elev.	Average Elev.	Mean Basin Temperature	Population Density
k k lace														
face w	1.00													
× ×	0.38	1.00												
N	0.31	0.85	1.00											
» »	0.14	0.83	0.77	1.00										
* *	-0.08	0.13	0.09	0.29	1.00									
»	-0.19	0.03	0.01	0.19	0.86	1.00								
	-0.18	0.02	0.01	0.18	0.86	1.00	1.00							
	-0.15	00.0	-0.01	0.17	0.84	0.99	0.99	1.00						
Watershed Curve Number 0.09	-0.01	-0.05	-0.14	-0.12	0.03	0.16	0.18	0.22	1.00					
River Slope -0.10	0.35	0.08	-0.13	0.03	-0.05	-0.09	-0.09	-0.06	-0.22	1.00				
Relief: Maximum Elev. 0.35	0.29	0.52	0.36	0.56	0.41	0.34	0.34	0.35	-0.19	0.63	1.00			
Relief: Average Elev. 0.25	0.38	0.49	0.31	0.53	0.33	0.25	0.25	0.27	-0.24	0.72	0.97	1.00		
Mean Basin Temperature -0.17	-0.07	-0.44	-0.44	-0.61	-0.23	-0.20	-0.18	-0.17	0.57	-0.50	-0.74	-0.74	1.00	
Population Density -0.23	-0.04	-0.17	-0.17	-0.40	-0.26	-0.24	-0.22	-0.20	0.42	-0.15	-0.27	-0.30	0.48	1.00
Maximum Watershed Relief to Total Watershed Reservoir Pool	lief to Total	Watershed	Reservoir	Pool					Average	Watershe	Average Watershed Relief to River Slope	liver Slope		
	Surface Area	ea					250							
450														
400													1.1.1	
•							200							
200	•						5L)					1	~	
							neto					1		
8				and the second se			ı) 19	_			1	\ \		
) 19ili } }			and the second se		•		ilэЯ				1			
250		and the second se					рәц				~			
	and a second sec						tersl							
000	and the second second						16W		1	~				
									•					
100 Martine		•					619	•		•				
							٧A	•/		•				
•							50	•	•	•		+		T
									0					
50								•						
							0							
0				_]		0.0000	000 0.0005	0.0010		0.0015 0.0020	0.0025	5 0.0030	0.0035

Table 32. Correlation Matrix, 15 Independent Variables, Regression Set 1, 12 Watersheds

Lastly, there is also a significant correlation (0.52) between maximum (and average) watershed relief and the total reservoir pool surface area. Inspection of the digital elevation models contained in Appendices B to PPP in comparison to the location of dams reveals that most of the dams located in fluvial systems are located on the edges of the watershed where the river slopes are greatest. Many rivers (and dams) in Michigan are located in glacial outwash deposits flanked by glacial moraines, an example is the Loud Dam (MI00178) on the Au Sable River (see Figure 44).

Figure 44. Loud Dam, MI00178, Au Sable River (2) (Google Earth Pro, 2021)

As discussed in Section 3.1, most of the dams in Michigan are small with dam heights of less than five meters. Michigan's extensive glacial heritage has resulted in relatively small differences in topography at the watershed scale in comparison to the elevation of the receiving water (the corresponding Great Lake or Great Lakes connecting channel, or reservoir). As discussed in Section 3.9, of the 1,378 dams located in these 60 Michigan watersheds, 1,042 dams have dam heights of less than 5 meters (see Figure 26). Because most dams were built in glacial outwash deposits and have corresponding low river slopes, the reservoir pool surface areas are also small. The mean and median reservoir pool surface areas are 0.69 square kilometers and 0.06 square kilometers, respectively (see Figure 27).

Regression analysis of watershed sediment delivery estimates based on USACE-Detroit District dredging data for 12 rivers in comparison to 10 watershed characteristics are summarized on Table 33, Table 34, and Table 35. A total of 26 regressions were completed. Review of Table 33, Table 34, Table 35 reveals that of the river flows considered, the 1.5-year recurrence interval flow was most important, followed by the annual mean flow and 2-year recurrence interval flow. Other important variables include: watershed area, percent of the watershed covered in surface water, reservoirs, aquatic wetlands, and upland wetlands. Regressions 1-18, 1-19, and 1-21 have good significance (<0.05), good R² (0.98 to 0.99), and many of the p-values of the independent variables were less than 0.05. However, when these regression equations were applied to the 60 watersheds and five sub-watersheds, negative estimates of watershed sediment delivery occurred at the 38 to 39 of the 65 total watersheds included in this research.

Transformed									
	Regression								
Regression Summary	Set 1-1	Set 1-2	Set 1-3	Set 1-4	Set 1-5	Set 1-6	Set 1-7	Set 1-8	Set 1-9
Significance	0.0442	0.0071	0.0135	0.0522	0.1773	0.6191	0.6391	0.4458	0.2544
Multiple R	0.9998	0.9992	0.9917	0.9551	0.8617	0.6184	0.5233	0.5199	0.5121
R Square	0.9997	0.9984	0.9835	0.9122		0.3824	0.2738	0.2703	0.2623
Adjusted R Square	0.9965	0.9913	0.9394	0.7586	0.4334	-0.1323	-0.1412	-0.0033	0.0984
Standard Error	3102	4859	12823	25599	39217	55440	55657	52186	49472
Observations	12	12	12	12	12	12	12	12	12
Coefficients									
Intercept	-1101888	-775810	35309	59664	-6505	59989	28512	26836	25625
Watershed Area	8	15	9	-40	45	5	4	4	4
Total Surface Water Area	5761947	4510564	934836	-4167213	1911145	-2176901	-1177935	-1168842	-1405931
Total Reservoir Pool Surface Area	2301642	1089746	3151221	11058344	1045041	3534373	-1424483	-610902	
Total Aquatic Wetlands	-794214	-29083	294078	-947216	660356	316883	262834		
Total Upland Wetlands	1078940	273471	-1917856	-3410569	-633369	-1853067			
Annual Mean Flow	-1125	-1658	-1136	2580	-4444				
1.5 year Recurrence Flow	3044	3007	2579	646					
2.0 year Recurrence Flow	-2395	-2405	-1980						
Watershed Curve Number (CN)	13469	9588							
River Slope	-8868731								
Total Surface Water and Reservoirs									
Total Wetlands (Aquatic and Upland)									
P-Values									
Intercept	0.116	0.053	0.174	0.185	0.888	0.285	0.510	0.495	0.487
Watershed Area	0.393	0.211	0.783	0.282	0.033	0.177	0.225	0.196	0.179
Total Surface Water Area	0.104	0.056	0.667	0.201	0.477	0.459	0.662	0.643	0.533
Total Reservoir Pool Surface Area	0.272	0.498	0.407	0.085	0.842	0.627	0.783	0.774	
Total Aquatic Wetlands	0.305	0.909	0.636	0.344	0.547	0.833	0.860		
Total Upland Wetlands	0.302	0.687	0.093	0.063	0.660	0.344			
Annual Mean Flow	0.267	0.130	0.557	0.402	0.046				
1.5 year Recurrence Flow	0.031	0.006	0.018	0.050					
2.0 year Recurrence Flow	0.039	0.009	0.037						
Watershed Curve Number (CN)	0.113	0.049							
River Slope	0.298								
Total Surface Water and Reservoirs									

Table 33. Regressions 1-1 to 1-9, Watershed Sediment Delivery Based on USACE Dredging Data, 12 Watersheds, Non-

E Dredging Data, 12 Watersheds, Non-	
ershed Sediment Delivery Based on USACE Dre	
Table 34. Regressions 1-10 to 1-18, Wat	Transformed

	Regression								
Regression Summary	Set 1-10	Set 1-11	Set 1-12	Set 1-13	Set 1-14	Set 1-15	Set 1-16	Set 1-17	Set 1-18
Significance	0.1166	0.0269	0.0088	0.0074	0.0101	0.0054	0.0418	0.0143	0.0005
Multiple R	0.4774	0.9434	0.9405	0.9129	0.8600	0.8284	0.8474	0.8455	0.9991
R Square	0.2279	0.8899	0.8846	0.8333	0.7396	0.6862	0.7181	0.7149	0.9982
Adjusted R Square	0.1507	0.7579	0.7885	0.7381	0.6419	0.6165	0.5570	0.6080	0.9935
Standard Error	48016	25637	23962	26664	31178	32266	34676	32620	4185
Observations	12	12	12	12	12	12	12	12	12
Coefficients									
Intercept	7060	364801	36706	9865	1788	-13406	-7779	-3385	-686771
Watershed Area	4	-10	6-	6-	6-	6-	6-	6-	13
Total Surface Water Area		-3037582	-1943618						4079881
Total Reservoir Pool Surface Area		7403071	6434144	4740582					1414434
Total Aquatic Wetlands									
Total Upland Wetlands		-3246423	-2441600	-1999881	-514391				
Annual Mean Flow									-1551
1.5 year Recurrence Flow		444	434	439	402	404	408	401	2959
2.0 year Recurrence Flow									-2354
Watershed Curve Number (CN)		-3912							8546
River Slope									-264264
Total Surface Water and Reservoirs							230,336		
I otal Wetlands (Aquatic and Upland)							(231,204)		
P-Values									
Intercept	0.733	0.608	0.147	0.565	0.925	0.384	0.766	0.860	0.001
Watershed Area	0.117	0.043	0.022	0.031	0.060	0.052	0.078	0.061	0.031
Total Surface Water Area		0.289	0.154						0.001
Total Reservoir Pool Surface Area		0.070	0.036	0.088					0.014
Total Aquatic Wetlands									
Total Upland Wetlands		0.138	0.021	0.046	0.236				
Annual Mean Flow									0.014
1.5 year Recurrence Flow		0.005	0.002	0.002	0.006	0.006	0.012	0.007	0.0003
2.0 year Recurrence Flow									0.0005
Watershed Curve Number (CN)		0.644							0.002
River Slope									0.901
Total Surface Water and Reservoirs							0.871		

able 35. Regressions 1-19 to 1-26, Wai ransformed	to 1-26, Wa	tershed Sec	diment Deliv	rery Based (on USACE	Dredging D	ata, 12 Wa	tershed Sediment Delivery Based on USACE Dredging Data, 12 Watersheds, Non-	
Regression Summary	Regression Set 1-19	RegressionRegressionRegressionRegressionRegressionSet 1-20Set 1-21Set 1-22Set 1-23Set 1-25Set 1-26	Regression Set 1-21	Regression Set 1-22	Regression Set 1-23	RegressionRegressionRegressionRegressionSet 1-21Set 1-22Set 1-23Set 1-24Set 1-25	Regression Set 1-25	Regression Set 1-26	

	Redression	Redression	Redression	Redression	Redression	Regression	Regression	Redression
Regression Summary	Set 1-19	Set 1-20	Set 1-21	Set 1-22	Set 1-23	Set 1-24	Set 1-25	Set 1-26
Significance	0.003	0.0221	0.00002	0.00035	0.01795	0.00523	0.03008	0.06004
Multiple R	0.9908	0.9166	0.9991	0.9908	0.9526	0.9506	0.9064	0.8776
R Square	0.9817	0.8402	0.9982	0.9817	0.9074	0.9037	0.8215	0.7702
Adjusted R Square	0.9597	0.7071	0.9951	0.9597	0.7962	0.8235	0.6728	0.5787
Standard Error	10455	28196	3635	10455	23522	21889	29801	33818
Observations	12	12	12	12	12	12	12	12
Coefficients								
Intercept	-823421	584	-690253	-823421	-9563	-12697	-691890	-668693
Watershed Area	4-	20	13	4	31	33	-7	
Total Surface Water Area	3252444		4062124	3252444	3582527	3516752	802860	412562
Total Reservoir Pool Surface Area	1423356		1425048	1423356	-519699		2424235	2541932
Total Aquatic Wetlands								
Total Upland Wetlands								
Annual Mean Flow		'	-1540		-3279	-3540		
1.5 year Recurrence Flow	3002		2957	3002	2594	2428	401	
2.0 year Recurrence Flow	-2301	-1227	-2351	-2301	-2136	-2003		332
Watershed Curve Number (CN)	10354		8588	10354			8560	8272
River Slope								
Total Surface Water and Reservoirs		850,208						
I otal Wetlands (Aquatic and Upland)								
P-Values								
Intercept	0.001	0.981	0.00013	0.00107	0.65532	0.49714	0.08976	0.13576
Watershed Area	0.039	0.322	0.01014	0.03935	0.12528	0.06045	0.11902	0.18995
Total Surface Water Area	0.004		0.00011	0.00449	0.09017	0.06822	0.62767	0.82404
Total Reservoir Pool Surface Area	0.081		0.00326	0.08063	0.67639		0.22812	0.26189
Total Aquatic Wetlands								
Total Upland Wetlands								
Annual Mean Flow			0.00363					
1.5 year Recurrence Flow	0.0006		0.00003	0.00063	0.07012	0.02644	0.00840	
2.0 year Recurrence Flow	0.0012	0.1470	0.00004	0.00119	0.03129	0.01640		0.01871
Watershed Curve Number (CN)	0.001		0.00014	0.00101	0.04063	0.02413	0.08976	0.13591
River Slope								

4.3. Regression Set 2, Analysis of Watershed Variables in Conjunction with the Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Non-Transformed Dependent and Independent Variables, 17 Watersheds

This set of regressions includes all 17 watersheds and was conducted to gain insight into identification of predictor variables with the addition of the five watersheds whose watershed sediment delivery estimates are based ¹³⁷Cs and ²¹⁰Pb radiometric dating (see Table 13). Non-transformed dependent and 15 independent variables were evaluated and are listed in Section 4.2.

Nineteen regressions were completed using these 15 independent variables. The step-wise regressions are summarized on Table 36 and Table 37. Review of Table 36 and Table 37 reveals that of the river flows considered, the 1.5-year recurrence interval flow was the most important, followed by the mean annual flow and 2-year recurrence interval flow. Other important variables include: watershed area and the percentage of the watershed covered in surface water (natural lakes, rivers and streams). Regressions 2-16 to 2-19 had acceptable significance (<0.05) and elevated R² (0.68 to 0.80) and at least some of the p-values of the independent variables were less than 0.05 (watershed area and the 1.5-year recurrence interval flow); however, when these regression equations were applied to the 60 watersheds and five sub-watersheds, negative estimates of watershed sediment delivery occurred at 17 to 35 watersheds. Eighteen of the 19 regressions produced large numbers of negative estimates of watershed sediment delivery to the river outlet with the exception of regression 2-15 which is a function of only watershed area. Although the significance of regression 2-15 was less than 0.05 (0.03) and P-value for watershed area was 0.032, the corresponding R² was low, only 0.271.

Regression Summary	Regression Set 2-1	Regression Set 2-2	Regression Set 2-3	Regression Set 2-4	Regression Set 2-5	Regression Set 2-6	Regression Set 2-7	Regression Set 2-8	Regression Set 2-9	Regression Set 2-10
Significance	0.294	0.068	0.043	0.084	0.032	0.011	0.008	0.004	0.011	0.011
Multiple R	0.995				0.963	0.962	0.951	0.945		0.857
R Square	066.0			0.929	0.928	0.926	0.904	0.893	0.811	0.735
Adjusted R Square	0.843		0.877	0.715	0.768	0.802	0.780	0.786	0.664	0.575
Standard Error	17674	12590	15687	23850	21508	19864	20930	20675	25875	29101
Observations	17	17	17	17	17	17	17	17	17	17
Coefficients										
Intercept	86,482	85,876	(8,665)	(83,443)	(76,985)	(64,902)	8,888	3,698	8,002	(2,093)
Watershed Area	(38)		(17)	35	34	29	28	26	15	43
Total Surface Water Area	477,716	443,098	842,310	2,203,907	2,116,805	1,976,374	1,729,065	1,811,614	138,218	1,591,464
Total Reservoir Pool Surface Area	5,204,783	5,274,485	2,537,019	(2,831,791)	(2,715,065)	(2,253,027)	(1,043,323)	(580,172)	1,528,199	(302,323)
Total Aquatic Wetlands	(1,685,440)	\sim	(821,575)	1,385,337	1,434,859	1,267,132	964,075	654,804	318,004	965,760
Total Upland Wetlands	(934,006)		(456,470)	(579,683)	(586,228)	(638,893)	(714,798)	(541,671)	(829,714)	(620,797)
Annual Mean Flow	3,102	3,108	965	(3,217)	(3,010)	(2,563)	(2,734)	(2,883)	(2,023)	(4,122)
1.5 year Recurrence Flow	3,713				3,715	4,004	2,928	1,672	245	
2.0 year Recurrence Flow	(4,083)	(4,067)	(2,511)	•	(3,936)	(4,326)	(3,047)	(1,304)		
5 year Recurrence Flow	945				553	699	448			
Watershed Curve Number (CN)	126	156	(360)	1,195	1,174	1,077				
River Slope	(12,014,023)	(12,215,644)	414,497	2,567,854	5,009,800					
Relief: Maximum Elevation	951		878	54						
Relief: Average Elevation	(1,910)		(1,539)							
Mean Basin Temperature	(11,940)	(11,979)								
Population Density	3									
P-Values										
Intercept	0.570	0.380	0.899	0.376	0.335	0.307	0.648	0.838	0.722	0.932
Watershed Area	0.466	0.258	0.551	0.200	0.155	0.083	0.099	0.109	0.411	0.002
Total Surface Water Area	0.803	0.713	0.554	0.274	0.227	0.199	0.266	0.234	0.931	0.318
Total Reservoir Pool Surface Area	0.426	0.211	0.454	0.412	0.370	0.350	0.641	0.785	0.529	0.902
Total Aquatic Wetlands	0.450	0.242	0.507	0.231	0.159	0.104	0.185	0.269	0.645	0.167
Total Upland Wetlands	0.417	0.175	0.369	0.426	0.366	0.270	0.236	0.319	0.214	0.388
Annual Mean Flow	0.500	0.294	0.691	0.216	0.162	0.076	0.066	0.047	0.203	0.004
1.5 year Recurrence Flow	0.345	0.145	0.242	0.285	0.119	0.052	0.095	0.022	0.088	
2.0 year Recurrence Flow	0.404	0.198	0.370	0.401	0.187	060.0	0.174	0.039		
5 year Recurrence Flow	0.452	0.244	0.516	0.691	0.427	0.231	0.399			
Watershed Curve Number (CN)	0.931	0.864	0.721	0.308	0.258	0.232				
River Slope	0.621	0.434	0.975	0.898	0.745					
Relief: Maximum Elevation	0.259	0.081	0.091	0.810						
Relief: Average Elevation	0.243	0.072	0.088							
Mean Basin Temperature	0.454	0.245								
Population Density	0.923									

Table 36. Regressions 2-1 to 2-10, 17 Watershed Sediment Delivery Estimates, Non-Transformed

Non-Transformed
y Estimates,
ent Delivery
ed Sedime
7 Watershe
to 2-19, 17 Wa
ions 2-11
7. Regress
Fable 37

Regression Summary	Regression Set 2-11	Regression Set 2-12	Regression Set 2-13	Regression Set 2-14	Regression Set 2-15	Regression Set 2-16	Regression Set 2-17	Regression Set 2-18	Regression Set 2-19
Significance	0.348	0.338	0.193	0.089	0.032	0.015	0.004	0.001	0.003
Multiple R	0.603	0.544	0.544	0.541	0.521	0.892		0.830	0.826
R Square	0.364	0.296	0.296	0.292	0.271	0.795			0.683
Adjusted R Square	0.075	0.061	0.134	0.191	0.223	0.636			0.638
Standard Error Observations	42959 17	43264	41567	40164	39366	26954	71	2/04/ 17	26883
Coefficients									
Intercept	36.959	16.600	16.596	16.058	3.856	19.343	(4,708)	(2.545)	(5.789)
Watershed Area	2	4	4	4	5	(6)	(6)		(6)
Total Surface Water Area	(1,414,871)	(800,521)	(800,634)	(987,514)		(729,801)			
Total Reservoir Pool Surface Area	1,766,783	(398,616)	(395,596)			3,300,097	599,625	(441,065)	
Total Lipson Wetlands	229,248	1,143				(397,054)	(396,583)		
Total Optanta Wettantas Annual Mean Flow	(1,000,000)								
1.5 vear Recurrence Flow						392	380	369	372
2.0 year Recurrence Flow									
5 year Recurrence Flow									
Watershed Curve Number (CN)									
River Slope									
Relief: Maximum Elevation									
Relief: Average Elevation						(161)			
Mean Basin Temperature									
P-Values									
Intercept	0.265	0.526	0.506	0.503	0.774	0.364	0.709	0.830	0.543
Watershed Area	0.046	0.068	0.056	0.049	0.032	0.037	0.030	0.030	0.023
Total Surface Water Area	0.470	0.667	0.654	0.532		0.591			
Total Reservoir Pool Surface Area	0.618	0.890	0.794			0.168	0.746	0.634	
I otal Aquatic Wetlands	0.806	0.999				0.534	0.515		
I otal Upland Wetlands	0.302					0.278			
Annual Mean Flow									
1.5 year Recurrence Flow						0.002	0.002	0.001	0.001
2.0 year Recurrence Flow									
5 year Recurrence Flow									
Watershed Curve Number (CN)									
Relief: Maximum Elevation									
Keller: Average Elevation						0.330			
Ivicali Dasili Terriperature Domitation Domity									
		_						_	

4.4 Regression Set 3, Analysis of Watershed Variables in Conjunction with Prediction of Bedload Watershed Sediment Delivery at the River Outlet Using Natural Log Transformed Dependent and Independent Variables, 17 Watersheds

As with Regression Set 2, Regression Set 3 utilized 17 watershed sediment delivery estimates consisting of 12 watershed sediment delivery estimates based on USACE-Detroit District dredging data (12 rivers; see Table 17) and five watersheds sediment delivery estimates based ¹³⁷Cs and ²¹⁰Pb radiometric dating (see Table 13). Eighteen independent variables were considered, they include:

- Watershed Area (square kilometer)
- Percent of Watershed, Total Surface Water Area (EGLE, 1978) MIRIS Land Use
- Percent of Watershed, Total Reservoir Pool Surface Area, EGLE (2020) Dam Inventory
- Percent of Watershed, Total Aquatic Wetlands (EGLE, 1978) MIRIS Land Use
- Percent of Watershed, Total Upland Wetlands (EGLE, 1978) MIRIS Land Use
- Mean Annual River Flow (cubic meters/second)
- 1.5-year Recurrence Interval Flow (cubic meters/second)
- 2.0-year Recurrence Interval Flow (cubic meters/second)
- 5-year Recurrence Interval Flow (cubic meters/second)
- Watershed Curve Number (unitless)
- River Slope (meter/meter)
- Relief: Net Watershed Elevation Difference, Maximum Watershed Elevation (meter)
- Relief: Net Watershed Elevation Difference, Average Watershed Elevation (meter)

- Mean Basin Temperature (°C)
- Population Density (people/square kilometer)
- Percent of Watershed, Total Surface Water and Aquatic Wetlands
- Percent of Watershed, Total Wetlands (Upland and Aquatic)
- Percent of Watershed, Total Surface Water and Reservoirs

The natural log transformed dependent (watershed sediment delivery estimates) and independent variables are shown on Table 38. Correlation coefficients of the independent variables are shown on Table 32. Review of Table 32 reveals the strong correlation between watershed area and mean annual river, and 1.5-year, 2-year, and 5-year recurrence interval flows. In addition, strong correlations were also observed between reservoir pool surface area and river slope and relief (average and maximum water elevation).

Forty-two regressions were completed and are summarized on Table 39, Table 40, Table 41, Table 42, and Table 43. Review of Table 39, Table 40, Table 41, Table 42, and Table 43 reveals that a significance of less than 0.05 was observed in 19 of 42 regressions. Due to the natural log transformation of the dependent and independent variables (USGS, 2021), all of the regressions equations result in positive estimates of bedload watershed sediment delivery at the river outlet.

Variables
Independent Va
ural Log Transformation of Dependent and Indepe
ition of Dep
Transforma
Natural Log
Table 38.

				Ln Transfom.		Ln Transform	Ln Transform	Ln Transform Ln Transform Ln Transform Ln Transform Ln Transform	Ln Transform	Ln Transform
			tonnes/year	tonnes/year		kilometers ²	percent	percent	percent	percent
			Sediment	Sediment			Surface	Pool Surface	Pool Surface Total Aquatic	Total Upland
Watershed			Delivery to	Delivery to			Water,	Area,	Wetlands,	Wetlands,
Reference			the River	the River	Watershed	Watershed	Percent of	Percent of	Percent	Percent of
Number	River	USACE Harbor	Outlet	Outlet	Area Basis	Area	Watershed	Watershed	Watershed	Watershed
-	Au Gres River	Point Lookout Harbor	4,400	8.39	Contributing	6.44	(4.81)	(4.92)	(4.95)	(3.20)
2A	Au Sable River	NA; Mio Dam	9,500	9.16	Contributing	7.91	(4.41)	(6.52)	(4.89)	(3.47)
9	Black River (East)	Black River	11,000	9.31	Contributing	7.52	(6.89)	(8.08)	(2:99)	(3.39)
8	Macatawa River	Holland Harbor	17,000	9.74	Contributing	6.11	(3.93)	(11.62)	(6.63)	(4.95)
9A	Boardman River	NA; Brown Bridge Dam	1,100	7.00	Contributing	5.74	(5.70)	(00)	(5.24)	(4.61)
12	Clinton River	Clinton River	9,000	9.10	Total	7.63	(4.45)	(4.71)	(4.70)	(3.97)
14	Grand River	Grand Haven Harbor	10,000	9.21	Contributing	9.55	(4.75)	(5.67)	(4.81)	(3.53)
14A	Grand River	NA; Webber Dam	19,000	9.85	Contributing	8.41	(5.22)	(2.09)	(4.39)	(2.93)
15A	Huron River	NA; Ford Dam	12,000	9.39	Contributing	7.61	(4.04)	(3.93)	(3.76)	(2.97)
29	River Raisin	Monroe Harbor	62,000	11.03	Total	7.93	(4.57)	(5.36)	(4.97)	(4.19)
31	Rouge River	Rouge River	22,000	10.00	Total	7.09	(4.86)	(6.54)	(5.58)	(4.78)
32	Saginaw River	Saginaw River	190,000	12.15	Contributing	9.67	(5.74)	(5.09)	(4.83)	(3.46)
34	St. Joseph River	St. Joseph Harbor	12,000	9.39	Total	9.41	(4.18)	(2.09)	(4.38)	(3.44)
34A	St. Joseph River	NA; Riley Dam	4,500	8.41	Contributing	7.21	(4.22)	(4.87)	(4.64)	(3.93)
49	Manistique River	Manistique Harbor	11,000	9.31	Total	8.24	(4.01)	(3.51)	(2.28)	(2.39)
50	Menominee River	Menominee Harbor	7,300	8.90	Total	9.26	(4.87)	(4.21)	(4.41)	(2.75)
53	Ontonagon River	Ontonagon Harbor	30,000	10.31	Total	8.18	(3.66)	(4.77)	(4.82)	(3.35)

			Ln Transform	Ln Transform	Ln Transform	Ln Transform	Ln Transform	Ln Transform	-n Transform I	Ln Transform	Ln Transform	Ln Transform
			meters ³ /sec	meters ³ /sec	meters ³ /sec	meters ³ /sec	unitless	meter/meter	meters	meters	သိ	persons-km ²
Watershed				1.5 year	2.0 year	5 year	Watershed		Relief:	Relief:	Mean Basin	
Reference			Mean Annual	Recurrence	Recurrence	Recurrence	Curve		Maximum	Average	Temperature	Population
Number	River	USACE Harbor	River Flow	Flow	Flow	Flow	Number (CN)	River Slope	Elevation	Elevation	(Annual)	Density
-	Au Gres River	Point Lookout Harbor	1.52	3.75	3.93	4.18	4.32	(6.61)	4.72	3.93	1.96	2.66
2A	Au Sable River	NA; Mio Dam	3.33	4.30	4.41	4.57	3.95	(7.27)	5.18	4.37	1.91	2.41
9	Black River (East)	Black River	2.52	5.23	5.40	5.74	4.34	(7.47)	4.88	4.08	2.22	3.64
80	Macatawa River	Holland Harbor	1.68	4.68	4.97	5.46	4.33	(8.82)	4.05	3.14	2.28	5.55
9A	Boardman River	NA; Brown Bridge Dam	1.51	2.54	2.65	2.91	3.98	(6.52)	5.03	4.29	1.96	2.94
12	Clinton River	Clinton River	2.87	3.34	3.81	4.34	4.35	(6.80)	5.25	4.23	2.18	6.55
14	Grand River	Grand Haven Harbor	4.85	6.18	6.39	6.74	4.32	(8.14)	5.13	4.35	2.17	4.71
14A	Grand River	NA; Webber Dam	3.58	4.91	5.20	5.74	4.34	(7.88)	5.15	3.94	2.13	4.50
15A	Huron River	NA; Ford Dam	2.88	4.30	4.51	4.91	4.29	(7.43)	5.04	4.33	2.29	5.52
29	River Raisin	Monroe Harbor	3.11	4.91	5.10	5.48	4.37	(7.44)	5.29	4.33	2.24	4.19
31	Rouge River	Rouge River	2.17	4.44	4.75	5.33	4.40	(7.23)	4.88	3.90	2.31	6.99
32	Saginaw River	Saginaw River	4.83	6.64	6.78	7.06	4.32	(7.74)	5.29	4.20	2.05	4.33
34	St. Joseph River	St. Joseph Harbor	4.89	5.74	5.91	6.12	4.28	(6.85)	5.28	4.50	2.20	4.40
34A	St. Joseph River	NA; Riley Dam	2.59	3.61	3.75	4.09	4.32	(7.11)	4.74	3.81	2.31	3.71
49	Manistique River	Manistique Harbor	3.94	5.29	5.46	5.74	4.22	(7.58)	5.69	5.01	1.69	0.00
50	Menominee River	Menominee Harbor	4.62	5.83	5.98	6.29	4.23	(6.46)	5.92	5.41	1.70	1.90
53	Ontonagon River	Ontonagon Harbor	3.67	5.52	5.74	6.23	4.27	(5.75)	5.95	5.46	1.82	0.81

e 0.635 0.354 Square 0.945 0.354 Tor 0.119 0.517 Square 0.345 0.354 Square 0.119 0.517 Source 0.119 0.517 Source 0.119 0.517 Source 0.141 0.776 Source 0.141 0.776 Area 0.731 0.6228 Source 0.364 0.434 Source 0.731 0.6228 Source 0.364 0.404 Source 0.364 0.436 Ourende 0.364 0.404 Currence Flow 0.129 0.731 Currence Flow 0.129 0.364 Currence Flow 0.129 0.364 Currence Flow 0.7235 0.366 Currence Flow 0.7285 9.380 Currence Flow 0.7293 0.354 Currence Flow 0.7285 0.3665 Cureland	227 244 244 247 177 -10.8 2.82 2.82 2.82 2.82 2.82 2.83 2.33 3.3,33 2.33 2.33 2.33 2.33 2.33 2	0.527 0.397 0.761 0.746 0.044 0.746 1.091 1.007 1.018 1.007 1.018 1.007 1.018 1.007 1.001 1.007 1.001 1.005 1.003 0.093 0.003 0.620 0.093 0.093 0.620 0.093 0.093 0.620 0.093 0.093 0.620 0.093 0.093 0.620 0.093 0.093 0.093 0.003	0.254 0.863 0.863 0.745 0.320 0.320 0.320 0.222 0.2200 0.2200 0.200 0.200 0.200 0.200 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.20000 0.200000000	0.197 0.714 0.714 0.245 0.346 0.924 0.923 0.602 0.023 0.602 0.023 0.622 -2.388 1.622 -2.388 1.773 1.140		0.058 0.842 0.708 0.481	0.157 0.740 0.547	0.313	0.204 0.607
0.972 0.945 0.946 0.119 0.119 0.517 1.047 0.119 0.517 1.1047 0.776 0.123 1.17 1.047 0.776 1.17 1.047 0.776 1.17 1.047 0.776 1.17 0.775 0.123 0.718 0.732 0.02 0.719 0.771 -2.1 0.364 0.364 0.434 0.364 0.364 0.434 0.364 0.771 -2.1 0.364 0.771 -2.1 0.364 0.773 0.06 0.364 0.773 0.0771 0.364 0.732 0.0771 0.364 0.732 0.0771 0.364 0.364 -4.404 0.364 0.364 -0.10 1.189 0.360 -1.3 0.362 0.364 -0.2 1.189 0.366 -3.804 1.189 -0.354 -0.1 1.189 -0.354 -0.3 1.131 0.212 -3.662 1.141 -1.3 -4.991 1.151 -2.13 -5.67 1.133 <t< td=""><td>594 592 592 547 17 17 17 10.8 2.82 2.82 2.92 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050 0.05 0.050 0.050 0.050000000000000</td><td>71 10 11 11 12 12 12 12 12 12 12 12</td><td>3.377 3.57 3.55 3.55 3.55 3.55 3.55 3.55</td><td>0.845 0.714 0.345 0.345 0.346 0.302 17 17 17 17 17 17 0.602 0.172 0.172 0.602 0.172 0.172 1.173 1.140</td><td>-0.9 -0.9 -2.3</td><td></td><td></td><td></td><td>0.607</td></t<>	594 592 592 547 17 17 17 10.8 2.82 2.82 2.92 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050 0.05 0.050 0.050 0.050000000000000	71 10 11 11 12 12 12 12 12 12 12 12	3.377 3.57 3.55 3.55 3.55 3.55 3.55 3.55	0.845 0.714 0.345 0.345 0.346 0.302 17 17 17 17 17 17 0.602 0.172 0.172 0.602 0.172 0.172 1.173 1.140	-0.9 -0.9 -2.3				0.607
0.119 0.517 17 0.776 17 0.776 1.047 0.776 1.047 0.776 1.047 0.776 1.17 1.121 1.17 0.735 1.1755 0.732 0.731 0.6538 0.731 0.628 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7320 0.771 0.7496 -1.338 1.18 0.189 0.7026 9.380 0.354 0.06 1.18 0.354 0.354 -0.01 1.18 0.354 0.354 -0.356 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.355 0.354 1.35 0.354 0.354 0.354 0.355 0.354 0.355 0.355 0.4320	11 17 2.82 0.03 2.82 2.82 2.82 2.02 0.05 0.05 0.05 0.05 0.05 0.05 0.0	194 191 17 17 1.0 0.0 0.0 1.43 1.0 0.0 0.0 1.43 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.77 3.00 0.02 0.76 -0.77 -0.76 -0.76	0.346 0.902 0.902 0.902 0.172 0.172 0.602 0.602 0.602 0.602 0.929 0.623 0.523 1.140	4.5 0.0 0.0 0.0 0.0 2.3				0.500
1.047 0.776 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0.776 0.716 0.714 0.731 0.728 0.711 0.189 0.7129 0.732 0.361 0.189 0.371 0.189 0.361 0.718 0.371 0.771 2.128 9.380 7.026 9.3804 0.354 0.096 1.354 0.096 0.339 8.049 5.62 0.354 1.419 -1.33 0.315 0.354 1.419 -1.33 0.315 0.354 0.354 -0.0 9.039 8.049 5.62 0.355 0.4340 0.354 1.411 2.155 1.430 0.354 0.317 0.354 1.431 0.355 0.3255 0.356 0.3265 0.358 0.4332 <	17 10.000 1.0000 1.00000 1.00000000	17 17 2.3 3.3 0.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	3.77 3.06 0.02 0.77 0.77 1.1.1.1 1.0.77 1.0.77	0.000 4.972 17 4.972 2.194 0.172 0.602 -0.023 0.602 -0.023 1.140 1.140	-2.00 -0.00 -2.03 -0.00 -2.03 -0.00 -2.03				0.158
17 17 17 17 -4.193 -0.141 -5.590 -1.765 -1.238 0.572 0.731 0.628 0.572 0.731 0.511 0.738 0.575 0.511 0.731 0.628 0.572 0.511 0.731 0.648 0.572 0.511 0.784 0.434 0.060 0.511 0.732 0.021 0.948 0.511 0.732 0.732 0.021 0.350 9.380 0.865 -1.309 1.4.696 -4.404 -1.309 -4.113 0.353 9.0339 8.049 -0.093 4.4991 -1.130 -4.113 -6.402 1.212 0.354 -0.093 8.043 1.309 -1.413 2.862 0.9364 1.4103 -2.130 -2.130 -4.113 0.212 9.0336 0.3494 5.804 1.413 0.354 0.3565 0.2354 <td><u></u></td> <td>74 4.4 0.05 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3</td> <td></td> <td></td> <td>-4.5 0.16 0.01 -0.9 -2.3</td> <td></td> <td>0.950</td> <td></td> <td>1.024</td>	<u></u>	74 4.4 0.05 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3			-4.5 0.16 0.01 -0.9 -2.3		0.950		1.024
ea 0.141 -1.765 -1.238 0.731 0.628 0.511 0.628 0.511 0.628 0.511 0.189 0.511 0.189 0.732 0.512 0.354 0.499 0.771 -0.320 0.129 0.359 0.354 0.359 0.354 -0.359 0.354 -0.359 0.354 -0.359 0.354 0.354 -0.359 0.354 0.356 0.354 0.354 0.354 0.356 0.3578 0.356 0.356 0.356 0.3578 0.0576 0.0576 0.0576 0.05778 0.0			3.778 3.080 0.222 0.750 0.750 0.544 -0.763 -0.763 -3.240	4.972 2.194 0.172 0.602 -0.929 -0.929 1.622 1.622 1.773	-4.581 2.082 0.165 0.013 0.578 -0.964 -2.371	17	17		17
ea 0.141	·		3.778 3.080 0.222 0.720 0.720 0.744 -0.763 -0.763 -3.240	4.972 2.194 0.172 0.023 0.023 0.023 0.023 0.023 1.122 1.622 1.140	4.581 2.082 0.165 0.013 0.578 -0.964				
ea -1.765 -1.238 0.731 0.628 0.511 0.628 0.511 0.132 0.511 0.132 0.511 0.132 0.511 0.189 0.771 -0.320 -0.771 -0.359 9.039 2.642 7.026 9.380 -4.404 -2.398 -0.354 0.354 9.039 9.039 9.039 9.039 0.778 0.778 0.278 0.			3.080 0.222 0.222 0.720 0.753 -1.137 -3.506 0.544 1.561 -2.763 -3.240	2.194 0.172 -0.023 -0.023 -0.929 -0.929 -1.773 1.140	2.082 0.165 0.013 0.578 -0.964	-5.279	-8.578	2.239	3.232
ea 0.731 0.628 0.364 0.434 0.364 0.434 0.511 0.189 0.511 0.189 0.511 0.189 0.511 0.189 0.320 0.771 0.129 0.771 0.129 0.771 0.129 0.771 0.359 0.773 0.359 0.354 9.039 8.049 0.354 9.035 0.359 0.354 9.039 8.049 0.7629 0.354 0.7629 0.7285 0.4901 0.7629 0.7285 0.4901 0.7629 0.7285 0.4901 0.7629 0.778 0.7629 0.7788 0.7629 0.7788 0.7709 0.7410 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734 0.7610 0.4734			0.222 0.750 0.750 -1.137 -3.506 0.544 0.544 -0.763 -3.240	0.172 -0.023 0.602 -0.929 -2.388 1.622 -1.773 -1.773	0.165 0.013 0.578 -0.964 -2.371	2.299	3.420	0.706	0.653
ea 0.364 0.434 0.908 0.732 0.511 0.189 0.511 0.189 0.511 0.189 0.722 3.80 1.0.359 0.711 0.129 2.642 1.0.359 0.364 2.338 -0.711 2.338 -0.711 2.338 -0.711 2.338 -0.354 9.039 8.049 -5.402 -0.354 9.039 8.049 -5.402 -0.354 0.0565 0.9960 0.7265 0.9960 0.77265 0.9960 0.7733 0.6366 0.7733 0.6366 0.7733 0.6366 0.7713 0.6366 0.7711 0.8015 0.7734 0.7709 0.7711 0.8015 0.7734 0.7709 0.7710 0.9472 0.7709 0.7711 0.8015 0.7731 0.6056 0.7734 0.7709 0.7741 0.7709 0.7741 0.7709 0.7741 0.7709 0.7741 0.7741 0.7741 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7741 0.7765 0.9960 0.7765 0.9960 0.7765 0.9960 0.7774 0.7765 0.9960 0.7765 0.9960 0.7741 0.7765 0.7765 0.9960 0.7778 0.7765 0.9960 0.7778 0.7765 0.9960 0.7778 0.77797 0.7778 0.7778 0.77778 0.7778 0.7			0.020 0.750 -1.137 -3.506 0.544 0.544 -0.763 -3.240	-0.023 0.602 -0.929 1.622 -1.773 -1.773	0.013 0.578 -0.964 -2.371	0.197	0.242	0.109	0.172
-0.732 -0.908 -0.732 -0.771 -0.189 -0.771 -0.189 -0.771 -0.129 -2.642 -0.320 -0.771 -0.129 -2.642 -0.359 -0.356 -9.3804 -2.398 -3.804 -2.398 -3.804 -2.398 -3.804 -2.398 -5.402 -0.355 9.0354 9.0354 9.0355 9.0354 9.0355 9.0354 9.0355 9.0354 9.0355 9.0354 9.0354 9.0355 9.0354 9.0355 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0354 9.0451 9.0307 0.4734 9.0451 9.0307 0.4734 9.0355 9.0307 0.4734 9.0451 9.0307 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4734 9.0451 9.0507 0.4741 0.4754 9.0451 9			0.750 -1.137 -3.506 0.544 -0.763 1.561 -3.240	0.602 -0.929 -2.388 1.622 -1.773 1.140	0.578 -0.964 -2.371	-0.008	-0.321	-0.107	-0.098
0.511 0.189 0.511 0.189 0.320 -0.771 -0.320 -0.771 -0.329 -0.379 4.404 -2.398 -3.804 -2.398 -3.804 -0.359 0.354 9.039 8.049 -5.402 -4.991 2.835 3.662 0.212 9.0396 0.0529 0.2785 0.212 9.0265 0.9960 0.7133 0.6366 0.7785 0.27285 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.2778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.27778 0.277778 0.27778			-1.137 -3.506 0.544 -0.763 1.561 -3.240	-0.929 -2.388 1.622 -1.773 1.140	-0.964 -2.371	0.615	0.642	-0.092	-0.279
-0.129 -0.771 -0.129 -0.771 7.026 9.380 -4.696 -4.404 -2.398 -3.804 -0.359 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.212 -4.991 2.835 -0.354 0.212 -4.991 -0.354 0.212 -4.991 -0.354 0.212 -4.991 -0.354 0.2785 -0.9966 0.7285 -0.256 0.2564 0.2564 -0.2564 0.7285 -0.2564 0.7285 -0.2564 0.7285 -0.2564 0.2788 0.7788 -0.2564 0.7788 -			-3.506 0.544 -0.763 1.561 -3.240	-2.388 1.622 -1.773 1.140	-2.371	-0.997	-0.660	-0.310	
-0.129 -2.542 -0.129 -2.542 -1.645 -4.404 -2.398 -3.804 -0.359 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -1.404 -2.395 -0.354 -4.991 -2.402 -4.991 -2.402 -4.991 -2.402 -4.991 -2.402 -4.991 -0.354 0.212 -4.991 -2.355 -0.9960 0.7133 -0.5366 0.7788 -0.7778 -0.7788 -0.7788 -0.7788 -0.7788 -0.7788 -0.7778 -0.7788 -0.7778 -0.7788 -0.7788 -0.7778 -0.77888 -0.7788			0.544 -0.763 1.561 -3.240	1.622 -1.773 1.140		-2.559	-2.771		
7.026 9.380 7.026 9.380 -4.696 4.404 -0.359 8.049 -0.359 8.049 -5.402 -4.991 2.835 3.662 0.212 2.835 3.662 0.212 2.835 0.9960 0.7629 0.7285 0.9960 0.7629 0.7285 0.9960 0.7629 0.7285 0.9960 0.7733 0.6366 0.7133 0.6366 0.7133 0.6366 0.7133 0.6376 0.7709 0.7410 0.4734 0.6034 0.4571 0.8076 0.4970			-0.763 1.561 -3.240	-1.773 1.140	0.386	1.060			
ea 0.7410 0.2398 -4.404 -2.398 -3.804 -2.398 -0.354 9.039 8.049 -5.402 -0.359 8.049 -5.402 -0.354 0.212 3.662 0.212 2.835 3.662 0.212 0.366 0.712 0.2354 0.7629 0.7285 0.7285 0.9960 0.7629 0.7285 0.7629 0.7285 0.7629 0.7285 0.7629 0.7733 0.6015 0.6778 0.7709 0.7410 0.4751 0.6034 0.4571 0.6034 0.4571 0.8076 0.4970			1.561 -3.240	1.140	0.709				
-3.598 -3.504 -0.359 -5.402 -5.402 -0.354 90.354 -5.402 -0.359 80.49 -5.402 -4.991 2.835 3.662 0.212 -4.991 2.835 3.662 0.7728 -4.991 0.7728 -0.354 0.7729 0.2354 0.7729 0.2354 0.7729 0.2354 0.7729 0.2354 0.7733 0.6366 0.7410 0.4734 0.6076 0.4734 0.6076 0.4970			-3.240						
ea 0.1359 -0.359 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.354 -0.356 -0.212 -4.991									
ea 0.739 8.049 -5.402 4.991 -5.402 -5.402 4.991 0.212 2.835 3.662 0.212 0.212 0.212 0.3960 0.7629 0.7285 0.4392 0.7285 0.4392 0.778 0.7713 0.6366 0.7133 0.6366 0.7738 0.7713 0.6368 0.7713 0.6368 0.7713 0.6576 0.7713 0.6576 0.7709 0.7713 0.6576 0.7709 0.7710 0.4751 0.6076 0.4970			-						
-5.402 -4.991 -5.402 -4.991 2.835 3.662 0.212 Reservoirs 0.2955 0.9960 0.7629 0.7285 0.4392 0.7285 0.4392 0.7788 0.7133 0.6366 0.7133 0.6366 0.7133 0.6366 0.7133 0.6376 0.7709 0.7410 0.4734 0.7410 0.4734 0.6034 0.4571 0.8076 0.4970	5.804 1.196								
2.835 2.835 3.662 quatic Wetlands 0.212 0.212 8.662 Reservoirs 0.2265 0.9960 0.7629 0.7285 0.4392 0.7285 0.4392 0.7788 0.7733 0.6366 0.4332 0.5778 0.7703 0.4334 0.4374 0.5075 0.5778 0.7703 0.5778 0.7703 0.5778 0.7703 0.5778 0.7703 0.5778 0.7703 0.5778 0.	-4.113								
0.212 0.212 quatic Wetlands 0.2265 0.9960 teservoirs 0.9265 0.9960 0.7529 0.7285 0.2354 0.4392 0.7789 0.2354 0.7595 0.2354 0.733 0.7133 0.6568 0.3578 0.7410 0.7410 0.4734 0.9928 0.7709 0.7709 0.7410 0.4710 0.4751 0.6054 0.6054 0.451 0.6054 0.6076 0.4970									
Aquatic Wetlands Reservoirs Control 2005 Control 2005 Con									
deservoirs 0.9265 0.9960 0.7629 0.7285 0.4392 0.7285 0.4392 0.7285 0.4392 0.778 0.4392 0.5778 0.4392 0.5778 0.4392 0.5778 0.4392 0.5778 0.4392 0.6366 0.9432 0.77310 0.9432 0.7709 0.9432 0.7701 0.9432 0.7703 0.9432 0.7704 0.9432 0.7709 0.9432 0.7709 0.9432 0.7709 0.9432 0.7709 0.9432 0.7709 0.9432 0.7709 0.9076 0.4551 0.8076 0.4970									
Reservoirs 0.9265 0.9960 0.7629 0.7285 0.77295 0.7285 0.4392 0.7285 0.4392 0.7786 0.7433 0.6566 0.7433 0.6366 0.7410 0.7713 0.8418 0.6346 0.9432 0.7709 0.9432 0.7709 0.9410 0.4704 0.6034 0.4551 0.6076 0.4970									
ea 0.9965 0.9960 0.7629 0.7285 0.4392 0.7285 0.4392 0.5758 0.7133 0.6366 0.7133 0.6366 0.8015 0.818 0.8418 0.9432 0.7709 0.1410 0.4734 0.6034 0.451 0.8076 0.4970									
ea 0.9265 0.9960 0.7285 0.9960 0.7285 0.7285 0.7529 0.7284 0.7595 0.5778 0.7733 0.6566 0.7733 0.6566 0.8015 0.8432 0.77810 0.9432 0.7410 0.4734 0.6034 0.4754 0.6034 0.4754 0.6034 0.4754 0.6034 0.4574 0.6036 0.4970									
ea 0.75285 0.7285 0.7285 0.73285 0.2354 0.4392 0.2354 0.7578 0.7595 0.5778 0.7713 0.5566 0.7133 0.5566 0.9432 0.7009 0.9432 0.7009 0.7410 0.4734 0.4754 0.6034 0.4574 0.6034 0.4970 0.4970	0.8487 0.7687	0.7804	0.7753	0.5168	0.5164	0.3811	0.2193	0.5571	0.2938
ea 0.4392 0.2354 0.778 0.5778 0.7133 0.5366 0.8015 0.8518 0.9432 0.7810 0.9432 0.7810 0.9410 0.7734 0.7410 0.4734 0.6034 0.4551 0.8076 0.4970	0.6756 0.4289	9 0.3758	0.1964	0.2654	0.2480	0.1147	0.0387	0.0283	0.0218
ea 0.778 0.5778 0.5778 0.778 0.8518 0.816 0.816 0.8418 0.8818 0.9815 0.8518 0.9432 0.7810 0.9432 0.7810 0.9428 0.77810 0.7410 0.4734 0.6034 0.4571 0.6034 0.4571 0.6034 0.4571 0.8076 0.4970	0.2534 0.5455		0.5793	0.6543	0.6449	0.5283	0.5091	0.7840	0.6323
0.7133 0.6366 0.8015 0.8518 0.9432 0.7810 0.9928 0.7009 0.7410 0.4734 0.6034 0.4551 0.8076 0.4970			0.9548	0.9467	0.9647	0.9759	0.2449	0.6893	0.7038
0.8015 0.8518 0.4432 0.7810 0.9928 0.7009 0.7410 0.4734 0.6034 0.4551 0.8076 0.4970			0.3539	0.4258	0.4111	0.3416	0.3957	0.8956	0.6146
0.3928 0.7009 0.928 0.7009 0.7410 0.4734 0.6034 0.4551 0.8076 0.4970	0.5767 0.3459	0.2540	0.1522	0.1879 0.1841	0.1405	0.0993	0.3089	0.6457	
0.7410 0.4734 0.6034 0.4551 0.8076 0.4970			0.9227	0.7608	0.8979	0.0527			
0.6034 0.4551 0.8076 0.4970		.2 0.9766	0.9356	0.8461	0.8203				
Curve Number 0.8076 0.4970			0.7007	0.7709					
	0.7926 0.8079	.9 0.4679	0.4257						
0.7412	0.9313 0.6958	0.9163							
0.3466 0.1352	0.1516 0.6396	9							
0.3334	0.1525								
Mean Basin Temperature 0.6573 0.3362									
Total Surface Water and Aquatic Wetlands 0.80/4 Total Methand									
Total Vicitaria Total Surfaces Motar and Basenvoire									

Table 39. Regressions 3-1 to 3-12, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation

	Redression	Regression Set	Regression Set	Regression Set	Regression Set						
Regression Analysis Summary	Set 3-13	Set 3-14	Set 3-15	Set 3-16	Set 3-17	Set 3-18	Set 3-19	3-20	3-21		3-23
Significance	0.117	0.116	0.034		0.131	0.081	0.012	0.036	0.075	0.012	0.003
Multiple R	0.595	0.515	0.515	0.793	0.753	0.689	0.685	0.685	0.745		0.678
R Square	0.354	0.265	0.265	0.629	0.567	0.474	0.470	0.470	0.556	0.465	0.460
Adjusted R Square	0.205	0.160	0.216	0.341	0.308	0.299	0.394	0.347	0.354	0.389	0.424
Standard Error	0.995	1.022	0.988	0.906	0.928	0.934	0.869	0.901	0.897	0.872	0.847
Observations	17	17	17	17	17	17	17	17	17	17	17
Coefficients											
Intercept	3.788	5.691	5.580	9.154	4.890	7.016	6.696	6.670	3.667	5.829	6.093
Watershed Area	0.635	0.491	0.491	-0.358	-0.274	-0.159	-0.170	-0.166			
Total Surface Water	0.101	0.023		0.154	0.071	0.094			0.076		
Reservoir Pool Surface Area	-0.201			0.374	0.211	-0.011		-0.002	0.131	-0.043	
Total Aquatic Wetlands				-0.164	-0.061				-0.049		
Total Upland Wetlands				-0.569	-0.699				-0.668		
Annual Mean Flow											
1.5 year Recurrence Flow				1.314	1.137	0.852	0.858	0.854	0.886	0.708	0.703
2.0 year Recurrence Flow											
5 vear Recurrence Flow											
Watershed Curve Number											
Piver Clone											
Kellef: Average Elevation				-0.732							
Mean Basin Temperature											
Population Density											
Total Surface Water and Aduatic Wetlands											
Total Wetland											
Total Surface Water and Reservoirs											
P-Values											
Intercept	0.1782	0.0274	0.0047	0.0922	0.1908	0.0470	0.0007	0.0371	0.1649	0.0003	0.0000
Watershed Area	0.0195	0.0414	0.0345	0.5117	0.6176	0.7691	0.6239	0.7496			
Total Surface Water	0.7517	0.9427		0.6589	0.8390	0.7553			0.8207		
Reservoir Pool Surface Area	0.2041			0.2443	0.4628	0.9535		0.9915	0.5652	0.7179	
Total Aquatic Wetlands				0.7882	0.9209				0.9336		
Total Upland Wetlands				0.3674	0.2742				0.2745		
Alfridat Mean Flow				9110	0.0646	90010	0 0266	0 1000	0.0020	0 0026	00000
				0.0410	0.0040	0.1200	0.000	0.1000	0.0035	0.0030	0700.0
2.0 year recurrence Flow											
Watershed Curve Number											
River Slope											
Relief: Maximum Elevation											
Relief: Average Elevation				0.2506							
Mean Basin Temperature											
Population Density											
Total Surface Water and Aquatic Wetlands											
Total Vetiand											
ו טומן טעו ומטב עעמובו מווע ואפאבו עטווא	-										

Table 40. Regressions 3-13 to 3-23, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation

Transformation
Natural Log T
y Estimates,
ediment Delive
33, 17 Watershed S
3-24 to 3-33, 1
Regressions (
Table 41.

	Regression Set	Regr	Regre	Regression Set	Regre	Regre		Regression Set Regression Set	Regre	Regression Set
Regression Analysis Summary	3-24	3-5	3-20	3-21	3-20	3-23	3-30	1.5-5	3-32	55-5
Significance	0.513									
Multiple R	0.539	0.537	0.515	0.744	0.744	0.686	0.752	0.752	0.753	0.685
R Square	0.291	0.288	0.265	0.554	0.554	0.470	0.565	0.565	0.567	0.470
Adiusted R Souare	-0.031		0.160							
Standard Error	1 133									
Observations	17					17				
Coefficients										
Intercept	5.779	5.467	6.704	3.389	3.370	6.229	4.646	4.645	4.739	6.670
Watershed Area							-0.278	-0.278	-0.262	-0.166
Total Surface Water	0.084					0 098	2			2
Deconvir Dvol Surface Area	0.042	0.055	0.470	0 1 2 0	0 125	0.050	0 202	0 202	0 100	6000
Total Activities Mothered	-0.042	-0.00	-0.170	0.120	0.123	000.0-		202.0	0.130	Z00.0-
Total Aquatic Vetialius	-0.200	-0.214		0.010	0 705		200.0	012.0	0 760	
	-0.134	-0.103	0 667	CI 7.0-	co / .0-		-0.740	-0.142	-0.7.38	
	0.014	0.013	100.0	000 0	000 0	0 740	011	011	1 120	0.054
				0.003	0000.0	7170	2	2		±00.0
Watershed Curve Number										
KIVEL Slope										
Relief: Maximum Elevation										
Relief: Average Elevation										
Mean Basin Temperature										
Population Density										
Total Surface Water and Aquatic Wetlands									0.072	
Total Wetland										
Total Surface Water and Reservoirs										
P-Values										
Intercept	0.0820	0.0488	0.0004	0.1270	0.1035	0.0030	0.1666	0.1451	0.1594	0.0371
Watershed Area							0 5959	0.5781	0 6184	0 7496
Total Surface Water	0.8812					0.7358	2000			
Reservoir Pool Surface Area	0.8424	0.8366	0.2825	0.5720	0.4250	0.6869	0.4546	0.3461	0 4132	0.9915
Total Aquatic Wetlands	0.6995	0.7291		0.9704			0.9976			
Total Upland Wetlands	0.8484	0.7676		0.1970	0.1334		0.1976	0.1303	0.1446	
Annual Mean Flow	0.0660	0.0528	0.0417							
1.5 year Recurrence Flow				0.0025	0.0016	0.0048	0.0512	0.0413	0.0544	0.1088
2.0 year Recurrence Flow										
5 year Recurrence Flow										
Watershed Curve Number										
Kiver Slope										
Relief: Maximum Elevation										
Keliet: Average Elevation										
Mean Basin Temperature										
Population Density										
Total Surface Water and Aquatic Wetlands									0.8401	
Total Wetland										
I otal Surface Water and Reservoirs										

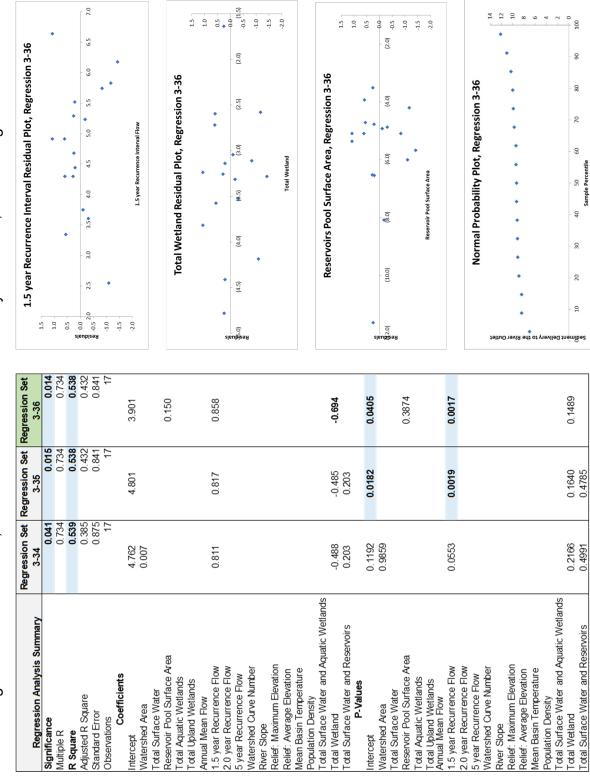


Table 42. Regressions 3-34 to 3-36, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation

7.0

Regression Analysis Summary	Regression Set 3-37	Regression Set 3-38	Regression Set 3-39	Regression Set 3-40	Regression Set 3-41	Regression Set 3-41 Regression Set 3-42
Significance	0.035	0.034			0.033	0.031
Multiple R	0.743	0.744	0.745	0.744	0.746	0.750
R Square	0.553	0.554	0.555	0.554	0.557	0.562
Adjusted R Square	0.404	0.405	0.407	0.450	0.409	0.416
Standard Error	0.862	0.861	0.859		0.858	0.853
Observations	17		17	17	17	
Coefficients						
Intercept	4.312	3.389	3.655	3.370	3.593	5.321
Watershed Area						-0.311
Total Surface Water	0.101		0.062			
Reservoir Pool Surface Area	0.142	0.120	0.118	0.125	0.114	0.242
Total Aquatic Wetlands		0.018				
Total Upland Wetlands		-0.715	-0.696	-0.705	-0.731	
Annual Mean Flow						
1.5 year Recurrence Flow	0.863	0.889	0.889	0.888	0.891	1.144
2.0 year Recurrence Flow						
5 year Recurrence Flow						
Watershed Curve Number						
River Slope						
Relief: Maximum Elevation						
Relief: Average Elevation						
Mean Basin Temperature						
Population Density						
Total Surface Water and Aduatic Wetlands					0 098	
Total Wetland	-0.696					-0.750
Total Surface Water and Reservoirs						
P-Values						
Intercent	0.061	0 127	0 147	0 104	0 118	0.086
Watershed Area	100.0	177.0	147.0	107.0	011.0	0.000
Total Surface Mater	171 0					0000.0
Total Surface Water Besenwir Dool Surface Area	61/.0 0.120	CF 1 0	0.823	104.0	104.0	
eservoli i vor ourrace Area	0.430	7/C'N	0.470	0.420	0.430	coc.0
		0.970				
l otal Upland Wetlands Annual Mean Flow		0.197	0.155	0.133	0.142	
1.5 vear Recurrence Flow	0.0024	0.0025	0.0024	0.0016	0.0023	0.0423
2.0 year Recurrence Flow						
5 year Recurrence Flow						
Watershed Curve Number						
River Slope						
Relief: Maximum Elevation						
Relief: Average Elevation						
Mean Basin Temperature						
Population Density						
Total Surface Water and Aquatic Wetlands					0.774	
Total Wetland	0.163					0 138
						00100

Table 43. Regressions 3-37 to 3-42, 17 Watershed Sediment Delivery Estimates, Natural Log Transformation

Of these 42 regressions, Regression 3-36 provided the best balance of significance (0.014), R^2 (0.538), and relative low p-values for the following independent variables (see Table 42):

- 1.5 year recurrence interval flow (P-value: 0.002),
- percent of watershed covered in upland and aquatic wetlands (P-value: 0.149),
- percent of the watershed covered in reservoirs (p-value: 0.387).

With respect to Regression 3-36, the regression summary is presented in Table 44. As discussed in Section 4.1.3, because watershed area is highly correlated with the 1.5-year recurrence interval flow, watershed area can be removed from the regression equation 3-36 without reduction in significance (see Section 4.1.3 and Table 42). Review of the residual plots reveals that the three independent variables (1.5-year recurrence interval flow; percentage of the watershed covered in wetlands, aquatic and upland; and, total reservoir pool surface area) are distributed randomly about zero (see Table 42). In addition, the normal probability plot of Regression 3-36 is linear.

Regression Statis	stics					
Multiple R	0.740					
R Square	0.547					
Adjusted R Square	0.443					
Standard Error	0.833					
Observations	17					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	10.9049	3.6350	5.2417	0.014	
Residual	13	9.0151	0.6935			
Total	16	19.9200				
	Coefficients S	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	3.901	1.7149	2.2749	0.040	0.1965	7.6061
Total Wetland	-0.694	0.4527	-1.5342	0.149	-1.6724	0.2834
Reservoir Pool Surface	0.150	0.1674	0.8943	0.387	-0.2120	0.5114
1.5 year Recurrence Flow	0.858	0.2171	3.9527	0.002	0.3890	1.3269

Table 44. Regre	ssion 3-36 (Summarv	Statistics
-----------------	--------------	---------	------------

The Regression 3-36 bedload watershed sediment delivery equation is presented as follows:

$$Q_{b} = EXP(3.901) * EXP(-0.694)^{LN(W)} * EXP(0.150)^{LN(R)} * EXP(0.858)^{LN(Q}_{1.5})$$
(20)

Where,

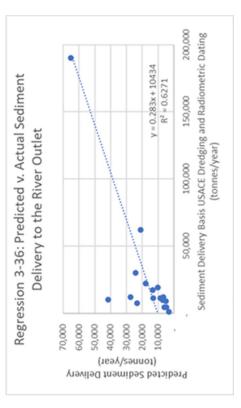
Q_b – Bedload Watershed Sediment Delivery (tonnes/year)

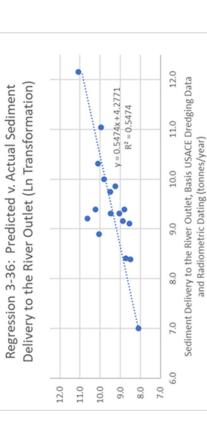
Q_{1.5} – 1.5-year Recurrence Interval Flow at the River Outlet (cubic meters/second)

W - Percent of the Watershed Covered in Both Upland and Aquatic Wetlands (EGLE, 1978 MIRIS Land Use)

R - Percent of the Watershed Covered in Reservoirs (EGLE, 2020 updated dam inventory)

With respect to the independent variables, 1.5-year recurrence interval flow is the most important (P-value: 0.002), and had consistently lower P-values than either annual mean flow or 2-year recurrence interval flow in Regression Sets 1,2, and 3. As discussed in Section 2.2, the 1.5-year recurrence interval flow is associated with 'bankfull flow" and is the flow rate where the river performs the most work (e.g. transporting sediment). Due to the strong correlation between watershed area and the 1.5-year recurrence interval flow, the removal of watershed area from Regression 3-36 results in an improvement in significance from 0.031 (Regression 3-42; Table 43) to 0.014 (Regression 3-36; Table 42).


With respect to regression 3-36, the percentage of the watershed covered in total wetlands (aquatic and upland) was determined to be an important predictor variable. In conjunction with the 1.5-year recurrence interval flow and the total percentage of watershed covered in wetlands, the percentage of the watershed covered in reservoirs was also determined to be an effective predictor variable of bedload watershed sediment delivery to the river outlet. As discussed in Section 3.10.2, although most dams in Michigan are small, they are effective at retaining sediment that would otherwise be transported in fluvial systems to the river outlet.


Review of Table 45 reveals that the predicted watershed sediment delivery estimates using Regression 3-36 in comparison to the estimated watershed sediment delivery estimates based on USACE dredging data and radiometric dating are within +/-70% for 13 of the 17 watersheds. The average difference between predicted watershed sediment delivery using regression 3-36 and the watershed delivery estimates based on USACE dredging was -31%.

The largest differences based on total metric tonnes between predicted sediment delivery using regression 3-36 and the watershed sediment delivery estimates based on either USACE dredging data or radiometric dating were noted at the Saginaw River (32), Grand River (14), St. Joseph River (34) and the Menominee River (50). With the exception of the Saginaw River (32), the predicted watershed sediment delivery using regression 3-36 were lower than the watershed sediment delivery estimates based on

Table 45. Predicted Sediment Delivery Using Regression 3-36 in Comparison to Estimated Sediment Delivery Using USACE Dredging Data and Radiometric Dating

USACE 516(e) Study (tonnes/year)		73,000 250,000	250,000 76,000 180,000
USACE (2010) Great Lakes Regional Trend Line $S_y = 177.6*A^{077}$ (A: km ²) (tonnes/year)	25,000 79,000 58,000 20,000 15,000	63,000 280,000 120,000 62,000 79,000 42,000	300,000 250,000 46,000 100,000 220,000 97,000
BQART Sediment Load (Qs) (Syvitski and Milliman, 2007) (tonnes/vear)	11,000 58,000 37,000 2,000 10,000	18,000 260,000 95,000 16,000 85,000 85,000	290,000 290,000 31,000 110,000 290,000 140,000
USACE (2020) Average Annual Dredging Forecast (tonnes/year)	3,100 2,700 16,000	4,400 8,500 66,000 15,000	180,000 13,000 A,200 34,000
Percent Difference: Regression 3-36 v. Estimated Watershed Sediment Delivery	11% -25% -24% 200%	-42% 310% -47% -66% -18%	-66% 133% 36% 215% -20%
Regression 3-36: Predicted Sediment Delivery to the River Outlet (tonnes/vear)	4,900 7,100 13,000 13,000 3,300	5,200 41,000 10,000 6,700 21,000 18,000	65,000 28,000 6,100 8,500 23,000 24,000
Basis	USACE Dredging Data Radiometric Dating USACE Dredging Data USACE Dredging Data Radiometric Dating	USACE Dredging Data USACE Dredging Data Radiometric Dating Radiometric Dating USACE Dredging Data USACE Dredging Data	USACE Dredging Data USACE Dredging Data Radiometric Dating USACE Dredging Data USACE Dredging Data USACE Dredging Data
Estimated Watershed Sediment Delivery to the River Outlet (tonnes/year/km ²)	6.99 3.47 5.98 37.72 3.54	4.36 0.71 4.22 5.95 22.37 18.27	11.96 0.98 3.32 2.90 0.70 8.37
Estimated Watershed Sediment Delivery to the River Outlet (tonnes/year)	4,400 9,500 11,000 17,000 1,100	9,000 10,000 12,000 62,000 22,000	190,000 12,000 4,500 11,000 7,300 30,000
USACE Harbor	Au Gres River Point Lookout Harbor Au Sable River NA; Mio Dam Black River (East) Black River Macatawa River Holland Harbor Boardman River NA; Brown Bridge Dam	Clinton River Grand Haven Harbor NA; Webber Dam NA; Ford Dam Monroe Harbor Rouge River	Saginaw River Saginaw River St. Joseph River St. Joseph Harbor St. Joseph River NA; Riley Dam Manistique River Manistique Harbor Menominee River Menominee Harbor Ontonagon River Ontonagon Harbor
River	Au Gres River Point Lookout I Au Sable River NA; Mio Dam Black River (East) Black River Macatawa River Holland Harbor Boardman River NA; Brown Brio	Clinton River Grand River Grand River Huron River River Raisin Rouge River	Saginaw River Saginaw River St. Joseph River St. Joseph River St. Joseph River NA; Riley Dam Manistique River Manistique Hai Menominee River Menominee Hai Ontonagon River Ontonagon Ha
Watershed Reference Number	1 2 A 8 8 6 9 A	12 14A 15A 29 31	32 34A 50 53

USACE dredging data for Grand River (14), St. Joseph River (34) and the Menominee River (50).

Of these four rivers, the Saginaw River had the largest total difference where the predicted annual watershed sediment delivery using regression 3-36 is 65,000 metric tonnes per year in comparison to the 190,000 metric tonnes per year based on USACE dredging data. Note, that with respect to the USACE's (2020) annual maintenance dredging forecast of 180,000 metric tonnes for the Saginaw River, 155,000 metric tonnes is forecast for the Entrance Channel located in Saginaw Bay and 25,000 metric tonnes is forecast for the Upper Saginaw River navigation channel (Inner Harbor). The littoral component of sediment delivery was estimated by USACE (2020) to be 10% (see Table 15) but based on the USACE (2020) dredging forecast, the littoral component could be much larger; further research is needed to separate fluvial and littoral sediment within the Saginaw River navigation channel.

With respect to the Grand River (14), the predicted annual watershed sediment delivery using regression 3-36 is 41,000 metric tonnes per year in comparison to the 10,000 metric tonnes per year based on USACE dredging data. With respect to the St. Joseph River (34), the predicted annual watershed sediment delivery using regression 3-36 is 28,000 metric tonnes per year in comparison to the 12,000 metric tonnes per year based on USACE dredging data. With respect to the St. Joseph River (34), the differences in predicted sediment delivery using regression 3-36 in comparison to the watershed sediment delivery using regression 3-36 in using the differences of large depositional areas near the river outlet (Figure 45).

Figure 45. Aerial Photographs, Grand River (14), St. Joseph River (34), Menominee River (50)

With respect to the Grand River (14), a large depositional area covering 15 square kilometers is located a short distance from the river outlet. Although smaller, similar areas of channel widening and large depositional areas are located near the river outlet of the St. Joseph River (34) and are shown on Figure 45. The impact of natural lakes and depositional areas in close proximity to the river outlet in conjunction with the prediction of watershed sediment delivery is a topic of further research. With respect to the Menominee River (50), the large difference in the predicted annual watershed sediment delivery using regression 3-36 (23,000 metric tonnes per year) in comparison to the 7,300 metric tonnes per year based on USACE dredging data is likely due to the reservoir trapping efficiency of the Park Mill Dam (MI00531) that is located approximately six kilometers from the river outlet (see Figure 45).

Of the watersheds where USACE 516e studies were completed, the USACE-Detroit District completed a bathymetric analysis of several pairs of pre- and postdredging events at the Ontonagon Harbor (Ontonagon River, 53) to estimate the littoral and fluvial components of the sediment removed during USACE maintenance dredging of the federal navigation channel (USACE, 2010a). The USACE (2010) approach to the estimate fluvial and littoral components of dredged sediment consisted of generating a digital surface using a Triangular Irregular Network (TIN) and then calculating the volume between the surfaces in the area where fluvial sediment was deposited (USACE, 2010a). This method also provides a good estimate of bedload sediment delivery to the river outlet. As shown in Table 45, the estimated watershed sediment delivery using USACE dredging data is 30,000 metric tonnes per year and is in close agreement with the predicted bedload sediment delivery using Regression 3-36 of 24,000 metric tonnes per year.

The percentage of bedload calculated using Regression 3-36 in comparison to the estimated total watershed sediment delivery estimated using the USACE (2010) Great Lakes Regional Trend Line for all 65 watersheds is presented Figure 46. The mean and median values of the percentage of bedload to total watershed sediment delivery are 19.4% and 13.3% and are within the range of 5-20% reported by USGS (2011) and similar to 10% that has been reported by others (MacArthur RC et al, 2008; USACE, 1995).

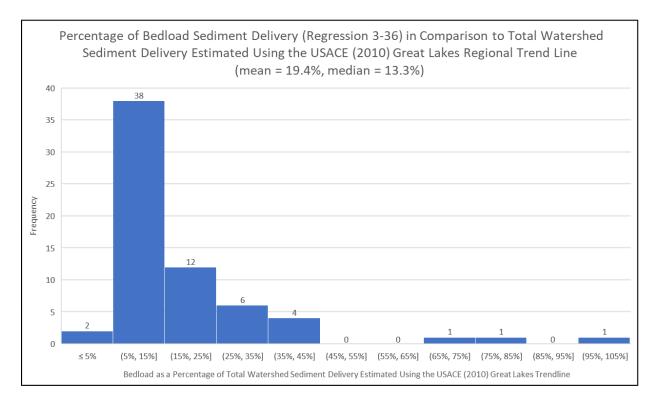


Figure 46. Percentage of Bedload Sediment Delivery in Comparison to Total Watershed Sediment Delivery

The Regression 3-36 predicted bedload watershed sediment delivery and the watershed sediment delivery based on the USACE (2010a) trendline and the BQART Equation for all 60 watersheds and five sub-watersheds are sumarized on Table 46 and In addition, Table 46 and Table 47 list the the bedload watershed sediment Table 47. delivery using regression 3-36 nomalized to watershed area as well as the percent bedload described previously. With respect to Regression 3-36, the predicted bedload watershed sediment delivery to the river outlet and at the corresponding sub-watersheds for the Grand River (14) and St. Joseph River (34) normalized to watershed area are similar. For the Grand River (14) at Grand Haven Harbor and the Weber Dam (14A), the bedload watershed sediment delivery as a function of watershed area are 2.9 tonnes/year/kilosquare meter and 2.3 tonnes/year/kilosquare meter, respectively. For the St. Joseph River (14) and the Riley Dam (34A), the bedload watershed sediment delivery as a function of watershed area are 2.3 tonnes/year/kilosquare meter and 4.5 tonnes/year/kilosquare meter, respectively. Although these are only two comparisons, Regression 3-36 provides good agreement of predicted bedload sediment delivery within the sub-watersheds of the Grand River (14) and St. Joseph River (34).

Table 46. Comparison of Regression 3-36 Predicted Bedload Sediment Delivery and Watershed Sediment Delivery Predicted Using the USACE (2010) Trendline and the BQART Equation, Watersheds 1-30

Watershed Reference Number	River	USACE Harbor	Predicted Sediment Delivery, Regression Set 3-36 (tonnes/yr)	Predicted Sediment Delivery, Regression Set 3-36 (tonnes/yr/km ²)	Sediment Delivery, BQART Equation (Syvitski and Milliman, 2007) (tonnes/yr)	Watershed Sediment Delivery, USACE (2010) Great Lakes Regional Trend Line (tonnes/yr)	Percent Bedload: Predicted Bedload Discharge as a Percentage of Total Watershed Sediment Delivery (USACE 2010 Trendline)
1		Point Lookout Harbor	4,900	7.8	11,000	25,000	19%
2	Au Sable River	Au Sable Harbor	11,000	2.5	140,000	110,000	10%
2A	Au Sable River	NA; Mio Dam	7,100	2.6	58,000	79,000	9%
3		NA	10,000	17.2	15,000	24,000	42%
4	Betsie River	Frankfort Harbor	2,100	3.4	22,000	25,000	8%
5	Big Sable	NA	2,400	5.7	15,000	19,000	13%
6		Black River	13,000	7.1	37,000	58,000	23%
7	Black River (West)	South Haven Harbor	3,000	4.1	13,000	29,000	11%
8	Macatawa River	Holland Harbor	13,000	29.5	2,000	20,000	68%
9	Boardman	NA	4,400	7.8	25,000	24,000	19%
9A	Boardman River	NA; Brown Bridge Dam	3,300	10.5	10,000	15,000	22%
10	Pine River	Charlevoix Harbor	8,000	9.9	36,000	31,000	26%
11	Cheboygan River	Cheboygan Harbor	13,000	3.6	110,000	99,000	13%
12	Clinton River	Clinton River	5,200	2.5	18,000	63,000	8%
13	Elk River	NA	6,700	6.5	44,000	37,000	18%
14	Grand River	Grand Haven Harbor	41,000	2.9	260,000	280,000	15%
14A	Grand River	NA; Webber Dam	10,000	2.3	95,000	115,000	9%
15	Huron River	NA	7,300	3.2	19,000	68,000	11%
15A	Huron River	NA; Ford Dam	6,700	3.3	16,000	62,000	11%
17	Kalamazoo River	Saugatuck Harbor	11,000	2.1	140,000	130,000	8%
18	Kawkawlin River	NA	5,600	9.6	5,400	24,000	23%
19	Lincoln River	NA	1,400	5.3	4,700	13,000	11%
20	Manistee River	Manistee Harbor	13,000	2.9	230,000	110,000	11%
22	Muskegon River	Muskegon Harbor	15,000	2.3	310,000	150,000	10%
23	Oqueoc River	NA	1,800	4.9	7,500	17,000	11%
24	Pentwater River	Pentwater Harbor	6,300	14.6	11,000	19,000	33%
25	Pere Marquette River	Ludington Harbor	4,800	2.8	70,000	54,000	9%
26	Pigeon River	Caseville Harbor	2,400	6.4	5,100	17,000	14%
27	Pine River	NA	17,000	32.8	9,100	21,000	77%
28	Platte River	NA	1,300	3.6	15,000	17,000	8%
29	River Raisin	Monroe Harbor	21,000	7.7	85,000	79,000	27%
30	Rifle River	NA	8,000	8.2	42,000	36,000	22%

Table 47. Comparison of Regression 3-36 Predicted Bedload Delivery and Watershed Sediment Delivery Predicted Using the USACE (2010) Trend line and the BQART Equation, Watersheds 31-63

Watershed Reference			Predicted Sediment Delivery, Regression Set 3-36	Predicted Sediment Delivery, Regression Set 3-36	Sediment Delivery, BQART Equation (Syvitski and Milliman, 2007)	Watershed Sediment Delivery, USACE (2010) Great Lakes Regional Trend Line	Percent Bedload: Predicted Bedload Discharge as a Percentage of Total Watershed Sediment Delivery (USACE 2010
Number	River	USACE Harbor	(tonnes/yr)	(tonnes/yr/km ²)	(tonnes/yr)	(tonnes/yr)	Trendline)
31	Rouge River	Rouge River	18,000	14.9	8,900	42,000	43%
32	Saginaw River	Saginaw River	65,000	4.1	290,000	300,000	21%
33	Sebewaing River	Sebewaing River	13,000	48.9	3,200	13,000	100%
34	St. Joseph River	St. Joseph Harbor	28,000	2.3	290,000	250,000	11%
34A	St. Joseph River	NA; Riley Dam	6,100	4.5	31,000	46,000	13%
35	Stoney Creek	NA	6,600	20.8	5,200	15,000	44%
36	Thunder Bay River	Alpena Harbor	11,000	3.6	87,000	87,000	13%
37	White River	White Lake Harbor	5,600	4.7	50,000	41,000	14%
38	Willow Creek	NA	1,000	3.9	4,000	12,000	8%
39	Au Train	NA	1,900	6.7	8,000	14,000	14%
40	Black River (Gogebic)		9,900	14.9	26,000	26,000	37%
41	Carp River	NA	2,600	6.0	7,400	19,000	14%
42	Cedar River	Cedar River Harbor	1,700	1.7	18,000	36,000	5%
43	Chocolay River	NA	4,300	10.8	22,000	18,000	24%
44	Days River	NA	600	3.9	3,500	8,900	7%
45	Dead River	Presque Isle Harbor	4,100	9.7	27,000	19,000	22%
46	Escanaba River	NA	7,100	3.0	89,000	70,000	10%
47	Ford River	NA	4,300	3.6	39,000	42,000	10%
48	Falls River	NA	2,300	19.9	7,200	6,900	33%
49	Manistique River	Manistique Harbor	8,500	2.2	110,000	100,000	8%
50	Menominee River	Menominee Harbor	23,000	2.2	290,000	220,000	11%
51	Montreal River	NA	6,700	9.6	26,000	28,000	24%
52	Munuscong River	NA	5,700	12.2	9,100	20,000	28%
53	Ontonagon River	Ontonagon Harbor	24,000	6.8	140,000	97,000	25%
54	Pine River	NA	4,000	5.6	10,000	28,000	14%
55	Portage River	Keweenaw Waterway	11,000	4.4	97,000	75,000	15%
56	Presque Isle River	NA	7,000	7.5	50,000	34,000	20%
57	Rapid River	NA	1,900	5.4	6,600	16,000	12%
58	Sturgeon River	NA	1,600	2.9	10,000	23,000	7%
60	Tahquamenon River	NA	4,600	2.2	30,000	64,000	7%
61	Two Hearted River	NA	500	0.9	14,000	22,000	2%
62	Waiska River	NA	2,200	5.7	5,400	17,000	13%
63	Whitefish River	NA	3,100	3.9	22,000	31,000	10%

CHAPTER 5 CONCLUSIONS

The purpose of this research was to determine if an empirical equation can be developed as a statistical model to describe the relationship between bedload watershed sediment delivery to the river outlet and significant watershed characteristics. This research involved regression analysis to identify key variables characteristic of the fluvial system and watershed to predict watershed sediment delivery of bedload to the river outlet of 60 Michigan rivers and five sub-watersheds.

The identification of predictor variables was conducted by evaluating the dependent variable which consisted of 17 watershed sediment delivery estimates based on 12 watershed sediment delivery estimates developed from USACE-Detroit District dredging data and five watersheds sediment delivery estimates based ¹³⁷Cs and ²¹⁰Pb radiometric dating. Eighteen independent variables were considered in the regression analysis, they include:

- Watershed Area (square kilometers)
- Percent of the Watershed Covered in Natural Surface Water Bodies
- Percent of the Watershed Covered in Reservoirs Located on Rivers
- Percent of Watershed Covered in Aquatic Wetlands Use
- Percent of Watershed Covered in Upland Wetlands
- Mean Annual River Flow (cubic meters/second)
- 1.5-year Recurrence Interval Flow (cubic meters/second)
- 2.0-year Recurrence Interval Flow (cubic meters/second)
- 5-year Recurrence Interval Flow (cubic meters/second)

- Watershed Curve Number (unitless)
- River Slope (meter/meter)
- Relief: Net Watershed Elevation Difference Based on the Maximum Watershed Elevation (meter)
- Relief: Net Watershed Elevation Difference Based on the Average Watershed Elevation (meter)
- Mean Basin Temperature (°C)
- Population Density (people/square kilometer)
- Percent of Watershed Covered in Natural Surface Water Bodies and Aquatic Wetlands
- Percent of Watershed Covered in Total Wetlands (Upland and Aquatic)
- Percent of Watershed Covered in Natural Surface Water Bodies and Manmade Reservoirs

Eighty-seven regressions were completed using both non-transformed and natural log transformed dependent and independent variables. Based on the natural log normal regression analyses of dependent and independent variables, Regression 3-36 provided the best balance of significance (0.014), R^2 (0.538), and relative low P-values for the following three predictor variables (see Table 42):

- 1.5 year recurrence interval flow (P-value: 0.002),
- percent of watershed covered in upland and aquatic wetlands (P-value: 0.149),
- percent of the watershed covered in manmade reservoirs (P-value: 0.387).

The Regression 3-36 bedload watershed sediment delivery equation is presented as follows:

$$Q_{b} = EXP(3.901) * EXP(-0.694)^{LN(W)} * EXP(0.150)^{LN(R)} * EXP(0.858)^{LN(Q}_{1.5})$$

where,

Q_b – Bedload Watershed Sediment Delivery (tonnes/year)

Q_{1.5} – 1.5-year Recurrence Interval Flow at the River Outlet (cubic meters/second)

W - Percent of the Watershed Covered in Both Upland and Aquatic Wetlands (EGLE, 1978 MIRIS Land Use)

R - Percent of the Watershed Covered in Reservoirs (EGLE, 2020 updated dam inventory)

Review of the residual plots reveals that the three independent variables (1.5-year recurrence interval flow; percentage of the watershed covered in wetlands, aquatic and upland; and, total reservoir pool surface area) are distributed randomly about zero. In addition, the normal probability plot of regression 3-36 is linear.

Review of the predicted watershed sediment delivery estimates using Regression 3-36 in comparison to the estimated watershed sediment delivery estimates based on USACE dredging data and radiometric dating are within +/- 70% for 13 of the 17 watersheds. The largest differences (based on total metric tonnes) between the predicted sediment delivery using regression 3-36 and the watershed sediment delivery estimates

based on either USACE dredging data or radiometric dating were noted for the Saginaw River (32), Grand River (14), St. Joseph River (34) and the Menominee River (50).

Of the four rivers, the Saginaw River (32) has the largest difference between predicted sediment delivery using Regression 3-36 (65,000 metric tonnes/year) and the watershed sediment delivery estimate based on USACE dredging data (190,000 metric tonnes/year). This difference may be attributed in part to differences in the USACE's estimate of the separation of fluvial and littoral sediment at the river outlet; the percentage of maintenance dredging attributed to littoral sediment transport could be much larger than 10% that was utilized in this research. With respect to the Grand River (14) and St. Joseph River (34), the underprediction of watershed sediment delivery using Regression 3-36 is likely due to the impact of large depositional areas located in close proximity to the river outlet. With respect to the Menominee River (50), the difference in the predicted annual watershed sediment delivery using regression 3-36 (23,000 metric tonnes per year) in comparison to the 7,300 metric tonnes per year based on USACE dredging data is likely due to the reservoir trapping efficiency of a large dam (Park Mill Dam, MI00531) that is located approximately six kilometers from the river outlet.

The percentage of bedload predicted using Regression 3-36 in comparison to the estimated total watershed sediment delivery estimated using the USACE (2010a) Great Lakes Regional Trend Line is within the reported range of other published studies. The mean and median values of the percentage of bedload to total watershed sediment delivery for the 60 watersheds and five sub-watersheds included in this research are

19.4% and 13.3% and are within the range of 5-20% reported by USGS (2011) and similar to 10% that has been reported by others (MacArthur RC et al, 2008; USACE, 1995).

Of the watersheds where USACE 516e studies were completed, the USACE-Detroit District completed a bathymetric analysis at the Ontonagon Harbor (Ontonagon River, 53) of several pairs of pre- and post-dredging events to estimate the littoral and fluvial components of the sediment removed during USACE maintenance dredging of the federal navigation channel (USACE, 2010a). This method also provides a good estimate of bedload sediment delivery to the river outlet of Ontonagon Harbor. As shown in Table 45, the estimated watershed sediment delivery using USACE dredging data is 30,000 metric tonnes per year and is in close agreement with the predicted bedload sediment delivery using Regression 3-36 of 24,000 metric tonnes per year.

This research was successful in demonstrating that bedload watershed sediment delivery can be estimated from characteristics of the river and watershed. Areas of future study to improve Regression 3-36 are discussed in Chapter 6.

CHAPTER 6 AREAS OF FURTHER RESERACH

Based on this research, several suggestions follow to continue to improve the predictive capabilities of the bedload watershed sediment delivery described in Regression 3-36, these include:

Increase the Number of Estimates of Watershed Sediment Delivery By Conducting Radiometric Dating of Sediment Cores at RESSED Reservoirs Located in Michigan. The regression analysis completed during this research was based 17 estimates of watershed sediment delivery, 12 using USACE dredging data and five using radiometric dating. Increasing the number of data sets could be accomplished by conducting radiometric dating and bathymetric surveys of RESSED reservoirs located in Michigan (Table 48 and Figure 47), in addition to completing the analysis of fluvial and watershed characteristics as presented in this research.

Of the 21 RESSED reservoirs located in Michigan, radiometric dating has already completed at one reservoir (Ford Dam, 15A; RESSED 22-029; WSU, 2017), and one reservoir is located in the Lake Area of the Pine River (10L; RESSED 23-001) and not within one of the 60 watersheds included in this research. Eighteen of the 19 remaining RESSED reservoirs are located in southeast Michigan within the Huron River (16), River Raisin (29) and Rouge River (31) watersheds and one reservoir is located in the Manistee River (20) watershed (see Table 48). Note that watershed sediment delivery estimates that were completed at the RESSED reservoirs located in Michigan were incorporated into the USACE (2010) Great Lakes Regional Trend Line. Increasing the number of

comparisons from 17 may increase both the significance and R² of the revised bedload sediment delivery equation.

Incorporate Additional Harbors Where the USACE Has Separated Outer Harbor and Inner Harbor Dredging Projects. Beginning in 1999 and culminating in 2014, a period of below average Great Lakes water levels (USACE, 2021d) resulted in increased maintenance dredging of commercial, State and Federally maintained Harbor inlets and navigation channels which resulted in an increased focus on the beneficial re-use of dredged sediment for beach replenishment and other coastal projects (GLC, 2001; USEPA and USACE, 2007). During 2018, the State of Michigan revised testing requirements for dredged sediment to facilitate beneficial reuse of sediment that contains greater than 90% sand (EGLE, 2018). Going forward, the USACE-Detroit District plans to expand the separation of Outer and Inner Harbor maintenance dredging projects to facilitate beneficial reuse of dredged sediment (USACE, 2019c). If this occurs, it is possible that additional USACE Harbors and navigation channels with high estimated littoral components of dredged sediment could be included in a future update of this research, especially those located on Lake Michigan and Lake Superior.

Incorporate Additional Pre-Dredge Sediment Quality Data to Improve the Conversion of the Volume of Dredged Sediment to Metric Tonnes. The USACE-Detroit District typically conducts 5-10 pre-dredge sediment quality assessments at USACE navigation channels and harbors each year. This research would involve continued update the physical characteristics of the fluvial dredged sediment to improve the conversion of the volume of dredged sediment to metric tonnes.

Percent Storage	Lost	37.55%	9.85%	17.43%	95.78%	25.00%	44.25%	25.27%	10.18%	25.27%	46.02%	48.90%	58.43%	50.37%	4.37%	14.90%	24.44%	86.61%	41.62%	15.71%
Original Capacity	(acre-feet)	76.7	19945	3150	640	248	258.1	249.3	288.9	1551	240.1	21.33	227.8	677	121.3	1000	225	97.8	173	667.8
Elapsed Time	(years)	42	40	54	41	12.3	42	21	24	100	32	63	142	119	7	27	100	136	100	36
Date of RESSED	Survey	1969	1969	1969	1953	1951	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Year	Built	1927	1929	1915	1912	1939	1927	1948	1945	1869	1937	1906	1827	1850	1962	1942	1869	1833	1869	1933
	Watershed	Huron River	Huron River	Huron River	Manistee River	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	River Raisin	Rouge River	Rouge River	Rouge River	Rouge River
	Longitude	-83.82500	-83.44080	-83.75430	-85.90000	-84.18333	-84.09297	-84.24561	-84.02360	-84.08667	-83.78833	-84.03860	-84.11175	-83.94222	-84.17667	-84.03753	-83.46703	-83.30543	-83.46833	-83.41130
	Latitude	42.33500	42.21440	42.30830	44.21667	42.15500	42.17679	42.10938	42.14960	42.10000	42.16333	42.15010	42.04997	42.01333	41.98667	41.91053	42.39276	42.53041	42.41500	42.36670
RESSED	٩	22-024	22-028	22-030	22-002	22-016	22-017	22-018	22-019	22-020	22-022	22-023	22-027	22-031	22-032	22-034	22-021	22-025	22-026	22-033
Dam ID	Number	MI00735	MI00557	MI00560	MI00229	MI00128	MI00328	MI00121	MI00391	MI00392	MI00485	MI00715	MI04016	MI00593	MI00709	MI00594	MI00397	1	MI00399	MI00396
Watershed	Number	15	15	15	20	29	29	29	29	29	29	29	29	29	29	29	31	31	31	31

Table 48. RESSED Reservoirs Located in Michigan Watersheds

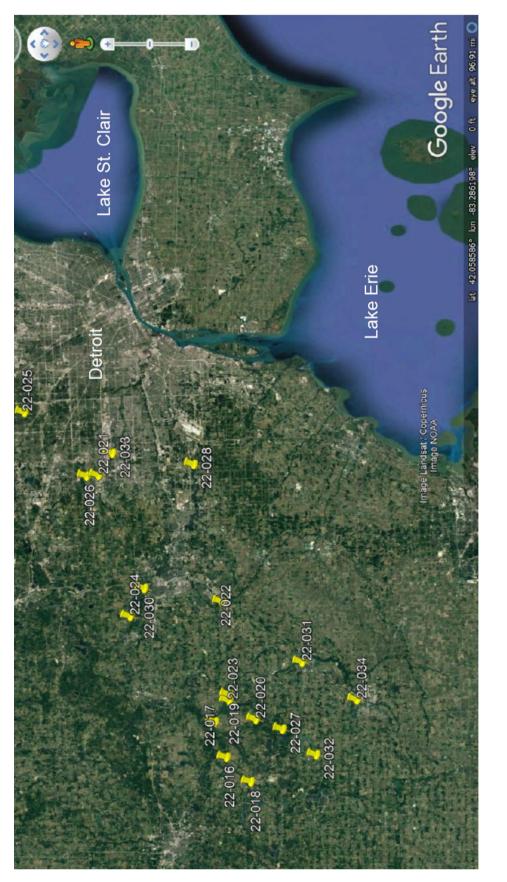
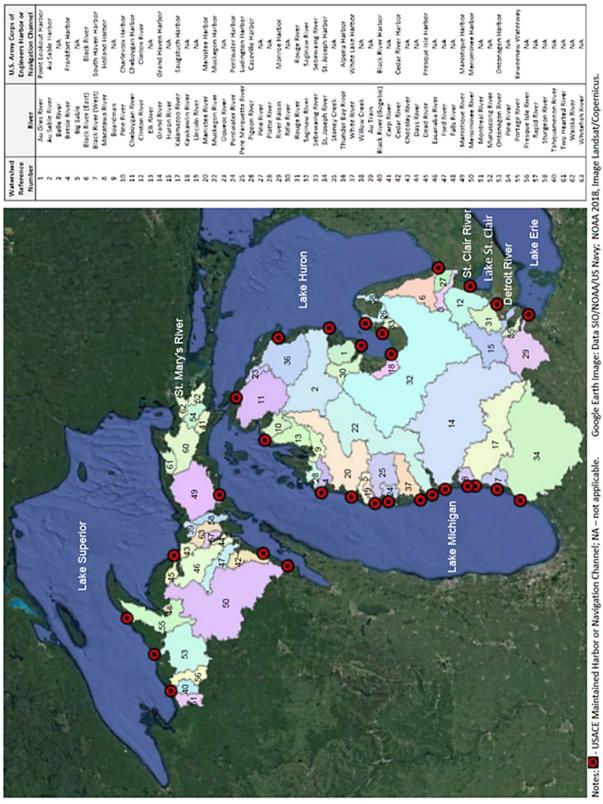
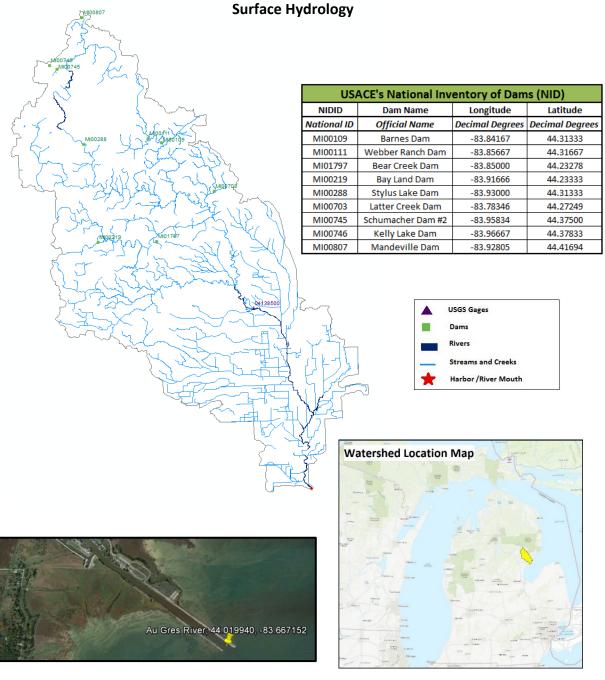
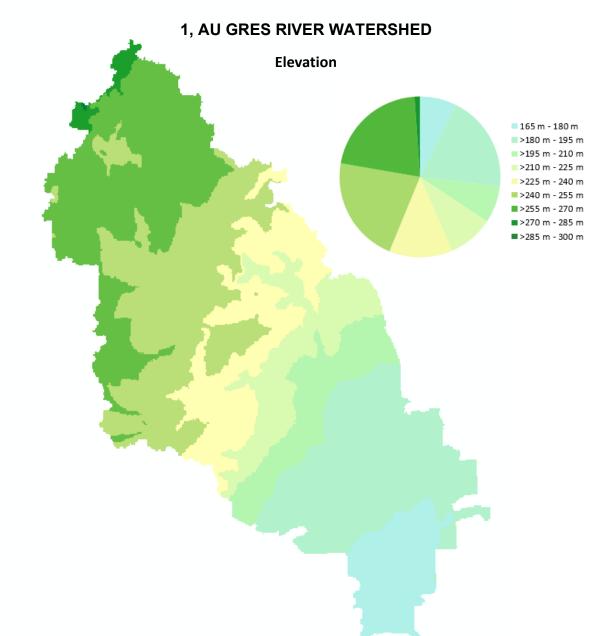



Figure 47. RESSED Reservoirs Located in Southeast Michigan (Google Earth Pro, 2021)


Conduct Additional Regression Analyses to Further Evaluate the 2011 NLCD Land Use Data as Predictor Variables of Bedload Watershed Sediment Delivery. As discussed in this research, the percentage of the watershed covered by the following 2011 NLCD land use categories were not predictive of bedload sediment delivery at the river outlet, these include: water, developed land, barren land, shrubland, grassland, agriculture and wetlands. Based on analysis of the 2011 NLCD watershed land use data, the percentage of watershed covered in wetlands was much greater than the wetland areas identified in the MIRIS Land Use/Cover Polygons (MDNR, 1978). The difference in the percentage of watershed covered by aquatic and upland wetlands is likely due differences in how the wetland area was identified and categorized. The 2011 NLCD relies on pixel analysis of aerial photographs, and the resolution is lower than the MIRIS land use resolution that is based on a raster file (EGLE, 2020).

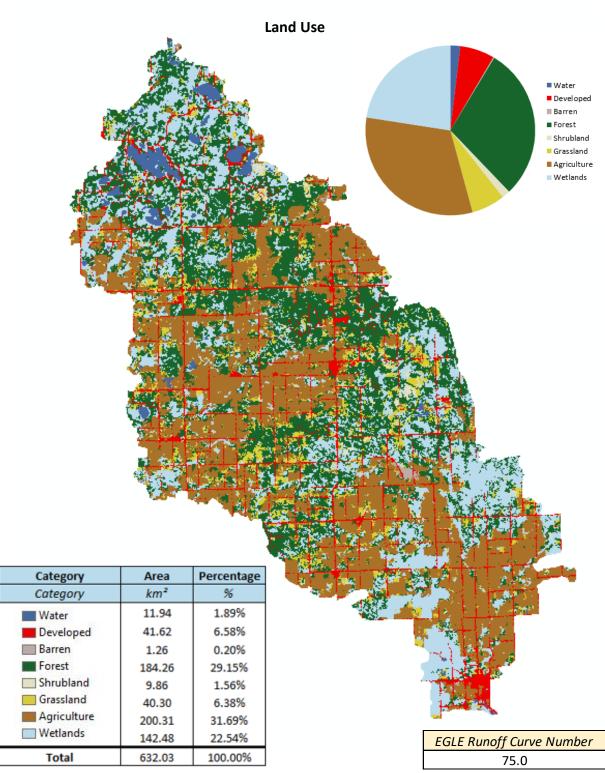
Because, the MIRIS Land Use/Cover Polygons (MDNR, 1978) were used to calculate the watershed Curve Numbers used in this research and because this data set served as the baseline wetland inventory for the State of Michigan, the MIRIS data set was used to calculate the percentage of the watershed covered in upland wetlands, aquatic wetlands, and surface water for each of the 60 watershed and five sub-watersheds included in this research. Further, there were significant differences between the percent of the watershed covered in upland and aquatic wetlands based on comparison of MIRIS land use (MDNR, 1978) and the 2011 National Land Cover Database. Given the ease of access of obtaining the NLCD land use data, especially in States other than Michigan, further evaluation of the 2011 NLCD land use data could be warranted to develop an equation that could be used in other Great Lakes states.

Expand the Assessment of the Impact of Reservoir Trapping Efficiency on Fluvial Sediment Delivery to the River Outlet. This research incorporated the use of total reservoir pool surface area to account for the impact of reservoirs on fluvial sediment delivery to the river outlet. Of the 1,378 dams located in fluvial systems, the EGLE (2020) dam inventory contained information to calculate approximate capacity/inflows to estimate reservoir trapping efficiency for approximately 58% (802) of the dams. Given the effectiveness of manmade reservoirs at retaining fluvial sediment, additional research could be completed to conduct an updated assessment of reservoir trapping efficiency utilizing the mean annual river flows and watershed mapping tools present in the USEPA (2021) Watershed Assessment, Tracking & Environmental Results System (WATERS) that is now available in Michigan. In addition, research could be conducted to re-evaluate the watershed area of each reservoir and to develop a basin-wide trapping efficiency methodology similar to the method proposed by Vorosmarty et al (2003). APPENDIX A. MICHIGAN WATERSHED NUMBER REFERENCE MAP

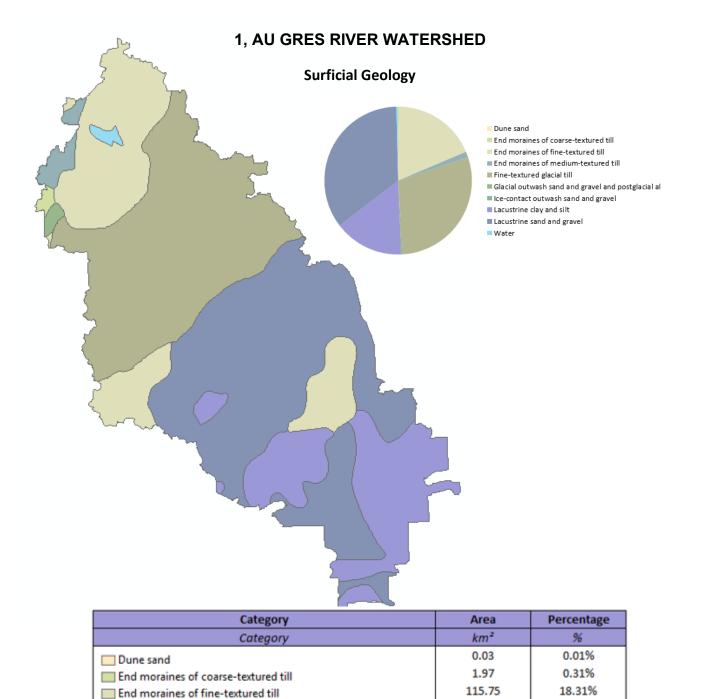

174

APPENDIX B. AU GRES RIVER WATERSHED (1)	
---	--

USGS Stream Gage's						
STA ID	Station Name	Longitude	Latitude	Active		
4138500	AU GRES RIVER AT COX ROAD NEAR NATIONAL CITY, MI	-83.742485	44.17613			
Number of Active USGS Stream Gage's in Drainage Area (2009)						


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	46.91	7.42%
>180 m - 195 m	123.29	19.51%
🔲 >195 m - 210 m	46.68	7.39%
🔜 >210 m - 225 m	57.68	9.13%
<u>>225 m - 240 m</u>	80.74	12.78%
🔜 >240 m - 255 m	135.94	21.51%
>255 m - 270 m	133.90	21.19%
> 270 m - 285 m	6.71	1.06%
> 285 m - 300 m	0.18	0.03%
Size of Drainage Area	632.03	100.00%


632.03	km²
289.00	m
177.00	m
224.61	m
29.76	m
	289.00 177.00 224.61

All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

1, AU GRES RIVER WATERSHED

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

8.10

183.77

2.23

0.03

96.17

221.70

2.28

632.03

1.28% 29.08%

0.35%

0.00%

15.22%

35.08%

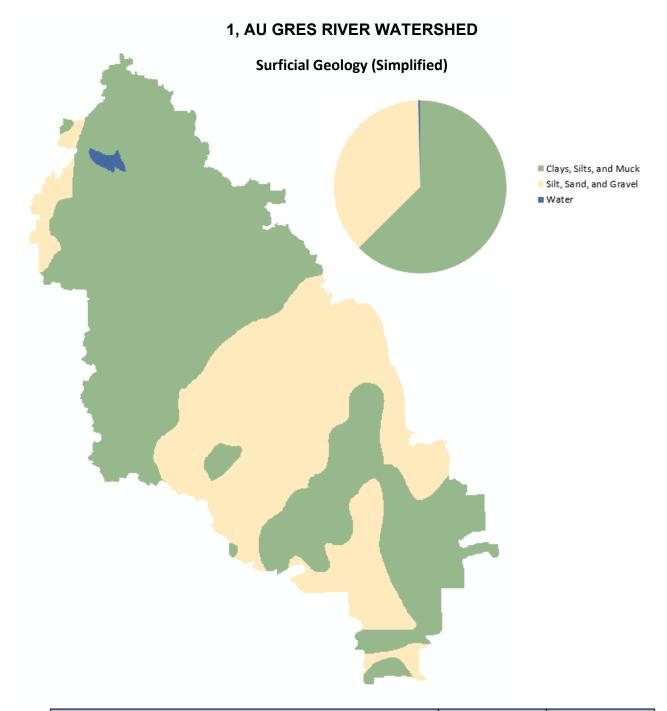
0.36%

100.00%

End moraines of medium-textured till

Ice-contact outwash sand and gravel

Glacial outwash sand and gravel and postglacial alluvium

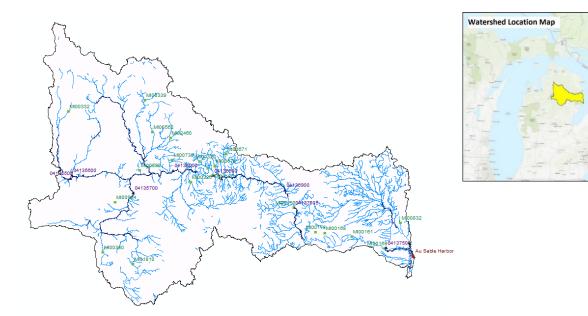

Total Watershed Area

Fine-textured glacial till

Lacustrine clay and silt

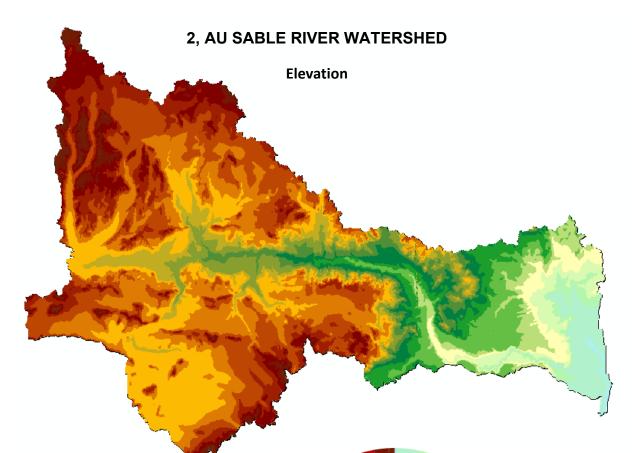
Water

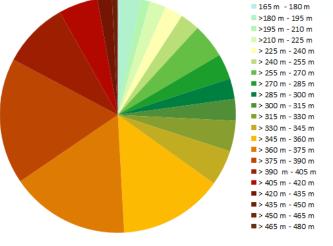
Lacustrine sand and gravel


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	395.70	62.61%
Silt, Sand, and Gravel	234.06	37.03%
Water	2.28	0.36%
Total Watershed Area	632.03	100.00%

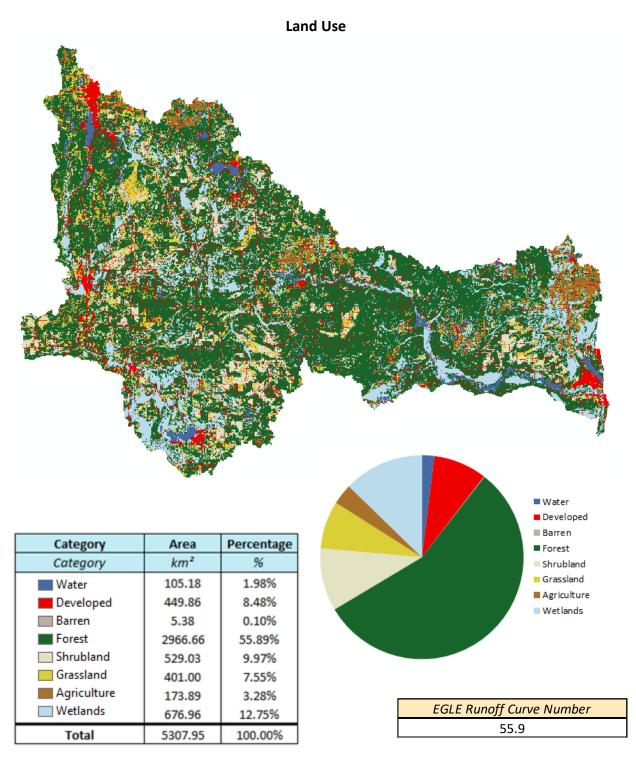
APPENDIX C. AU SABLE RIVER WATERSHED (2)

Surface Hydrology


USGS Stream Gage's						
STA ID	Station Name	Longitude	Latitude	Active		
4135500	AU SABLE RIVER AT GRAYLING, MI	-84.712529	44.659737			
4135600	EAST BRANCH AU SABLE RIVER AT GRAYLING, MI	-84.705584	44.668904			
4135700	SOUTH BRANCH AU SABLE RIVER NEAR LUZERNE, MI	-84.455575	44.614738	yes		
4136000	AU SABLE RIVER NEAR RED OAK, MI	-84.292515	44.676959	yes		
4136500	AU SABLE RIVER AT MIO, MI	-84.131117	44.660014	yes		
4136900	AU SABLE RIVER NEAR MC KINLEY, MI	-83.837778	44.612778	yes		
4137005	AU SABLE RIVER NEAR CURTISVILLE, MI	-83.802764	44.560847	yes		
4137500	AU SABLE RIVER NEAR AU SABLE, MI	-83.433861	44.436404	yes		
	Number of Active USGS Stream Gage's in Drainage	Area (2009)		6		

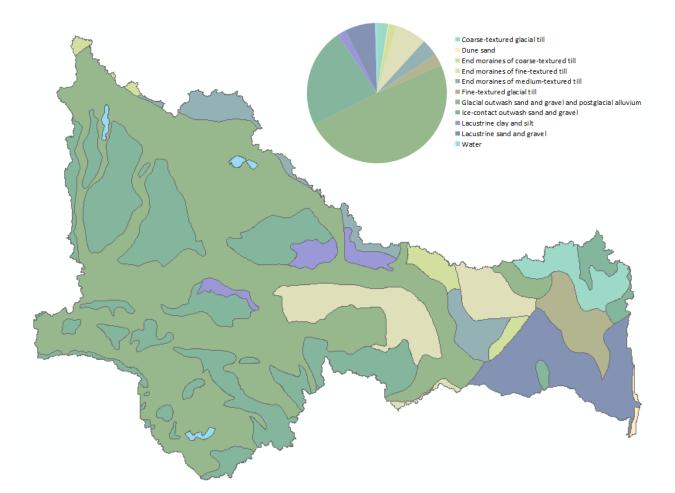


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Stream Gages includes only active gages and gages with 20+ years of discharge records since 1950


Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	16.56	0.31%
🔲 >180 m - 195 m	150.56	2.84%
i >195 m - 210 m	65.51	1.23%
>210 m - 225 m	119.21	2.25%
>225 m - 240 m	133.68	2.52%
>240 m - 255 m	140.87	2.65%
>255 m - 270 m	250.81	4.73%
= > 270 m - 285 m	185.52	3.50%
>285 m - 300 m	148.34	2.79%
>300 m - 315 m	158.64	2.99%
>315 m - 330 m	222.22	4.19%
🔜 >330 m - 345 m	258.61	4.87%
<u>>345 m - 360 m</u>	758.26	14.29%
= > 360 m - 375 m	866.54	16.33%
📕 >375 m - 390 m	917.57	17.29%
== >390 m - 405 m	481.23	9.07%
■ >405 m - 420 m	286.82	5.40%
= >420 m - 435 m	105.09	1.98%
📕 >435 m - 450 m	38.75	0.73%
📕 >450 m - 465 m	3.10	0.06%
= >465 m - 480 m	0.06	0.00%
Size of Drainage Area	5307.95	100.00%

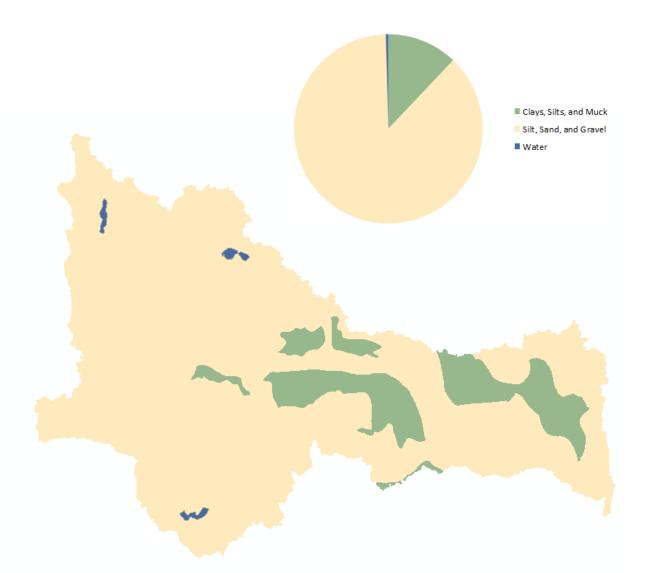
Au Sable Watershed		
Elevation Statistics		
Size of Drainage Area	5307.95	km²
Maximum	471.00	m
Minimum	176.00	m
Average	341.08	m
Standard Deviation	60.35	m

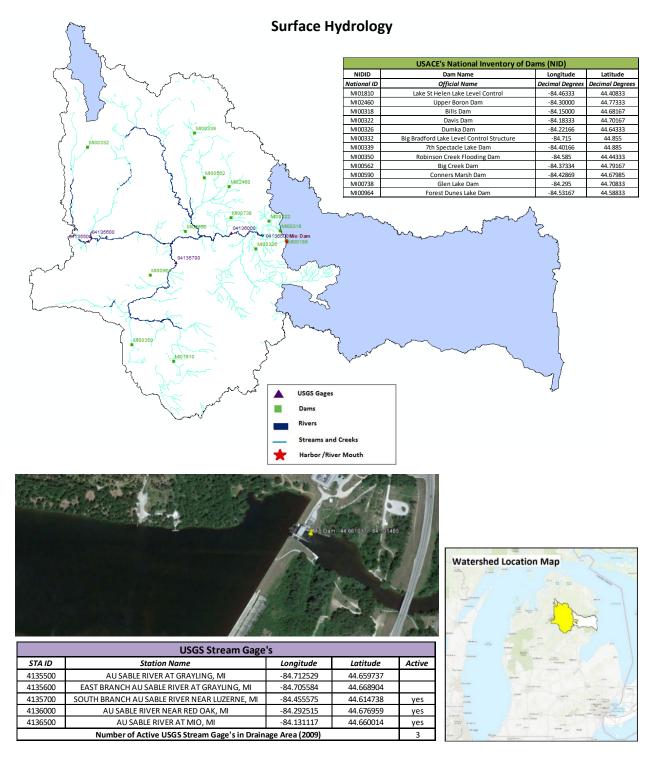
All Elevation Measurements with Respect to North American Datum 1983


2, AU SABLE RIVER WATERSHED

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

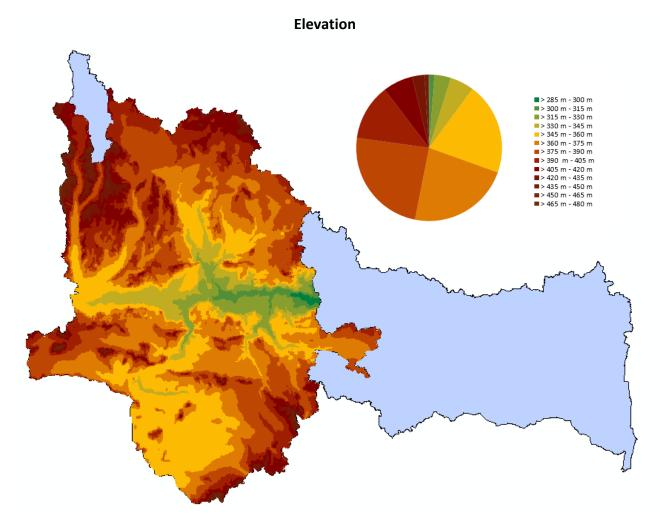
2, AU SABLE RIVER WATERSHED


Surficial Geology

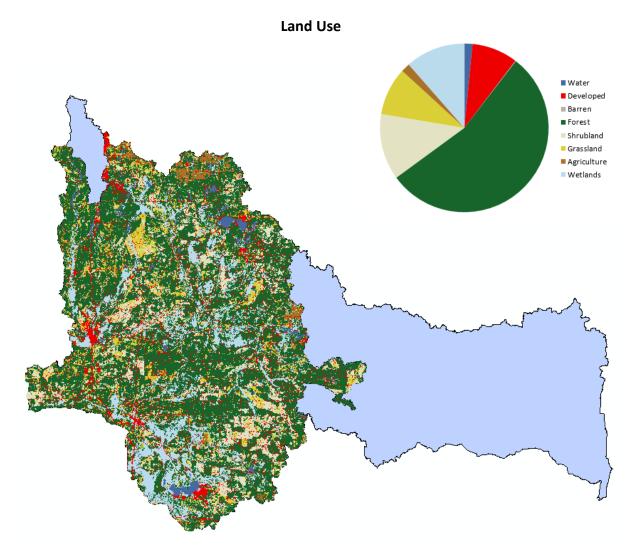

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	136.94	2.58%
Dune sand	8.86	0.17%
End moraines of coarse-textured till	94.39	1.78%
End moraines of fine-textured till	385.58	7.26%
End moraines of medium-textured till	207.51	3.91%
Fine-textured glacial till	149.11	2.81%
Glacial outwash sand and gravel and postglacial alluvium	2601.03	49.00%
Ice-contact outwash sand and gravel	1224.36	23.07%
Lacustrine clay and silt	105.76	1.99%
Lacustrine sand and gravel	372.16	7.01%
Water	22.25	0.42%
Total Watershed Area	5307.95	100.00%

2, AU SABLE RIVER WATERSHED

Surficial Geology (Simplified)


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	640.45	12.07%
Silt, Sand, and Gravel	4645.25	87.51%
Water	22.25	0.42%
Total Watershed Area	5307.95	100.00%

APPENDIX D. AU SABLE RIVER WATERSHED, MIO DAM (2A)


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

2A, AU SABLE RIVER WATERSHED, MIO DAM

			Category	Area	Percentage
			Category	km²	%
			>285 m - 300 m	6.46	0.19%
			> 300 m - 315 m	33.02	0.99%
			> 315 m - 330 m	120.80	3.63%
			> 330 m - 345 m	177.52	5.33%
			🔁 > 345 m - 360 m	676.35	20.32%
			= > 360 m - 375 m	754.50	22.66%
Mio Dam			= > 375 m - 390 m	800.83	24.06%
Elevation Statistics			= > 390 m - 405 m	412.75	12.40%
Size of Drainage Area	3328.97	km²	>405 m - 420 m	221.86	6.66%
Maximum	471.00	т	>420 m - 435 m	90.89	2.73%
			= > 435 m - 450 m	30.91	0.93%
Minimum	289.00	т	== >450 m - 465 m	3.01	0.09%
Average	372.52	т	>465 m - 480 m	0.06	0.00%
Standard Deviation	25.25	т	Size of Drainage Area	3328.97	100.00%

All Elevation Measurements with Respect to North American Datum 1983

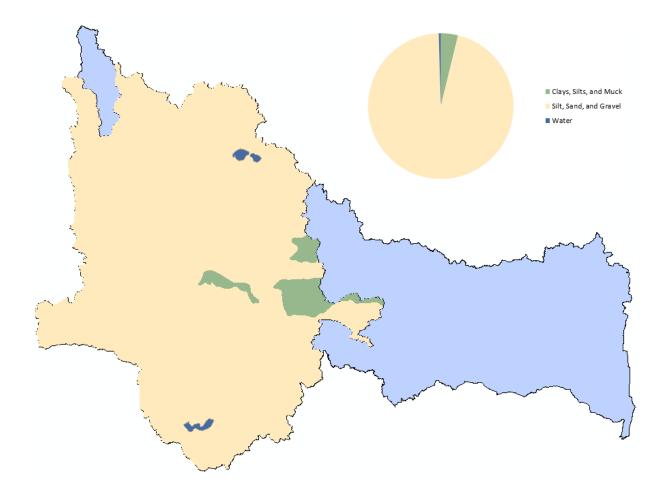
2A, AU SABLE RIVER WATERSHED, MIO DAM

Category	Area	Percentage
Category	km²	%
Water	52.49	1.58%
Developed	292.71	8.79%
Barren	3.52	0.11%
Forest	1813.47	54.48%
Shrubland 📃	422.22	12.68%
Grassland	305.48	9.18%
Agriculture	57.09	1.72%
Wetlands	381.99	11.47%
Total	3328.97	100.00%

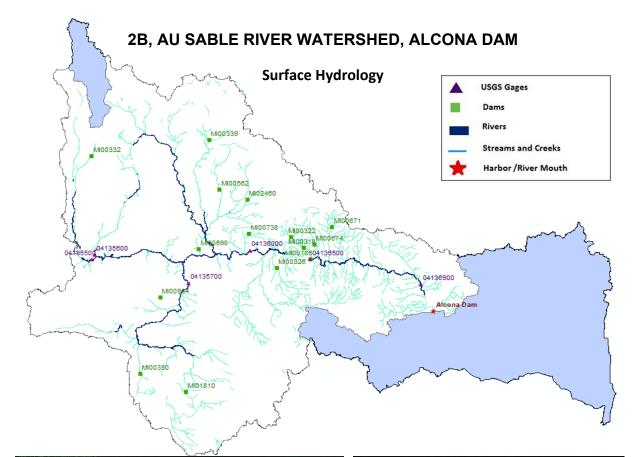
EGLE Runoff Curve Number 51.7

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology


Category	Area	Percentage
Category	km²	%
End moraines of coarse-textured till	6.67	0.20%
End moraines of fine-textured till	77.75	2.34%
End moraines of medium-textured till	88.92	2.67%
Glacial outwash sand and gravel and postglacial alluvium	2101.29	63.12%
Ice-contact outwash sand and gravel	990.14	29.74%
Lacustrine clay and silt	48.97	1.47%
Lacustrine sand and gravel	0.00	0.00%
Water	15.24	0.46%
Total Watershed Area	3328.97	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

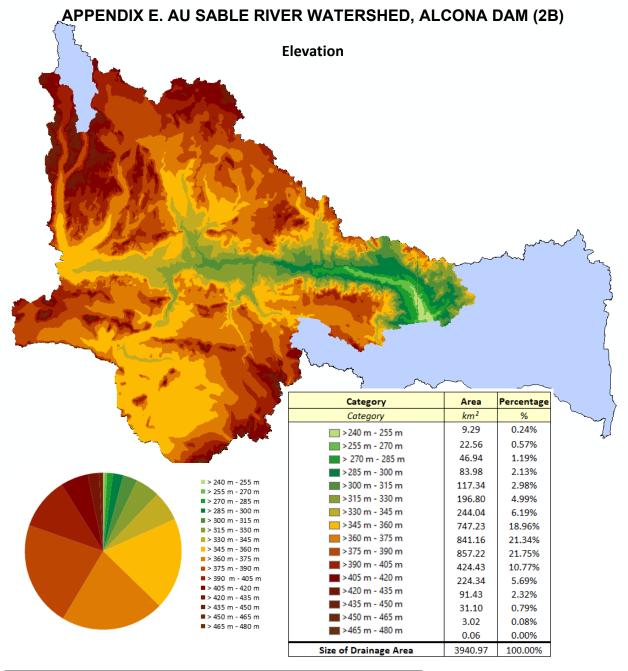

2A, AU SABLE RIVER WATERSHED, MIO DAM

2A, AU SABLE RIVER WATERSHED, MIO DAM

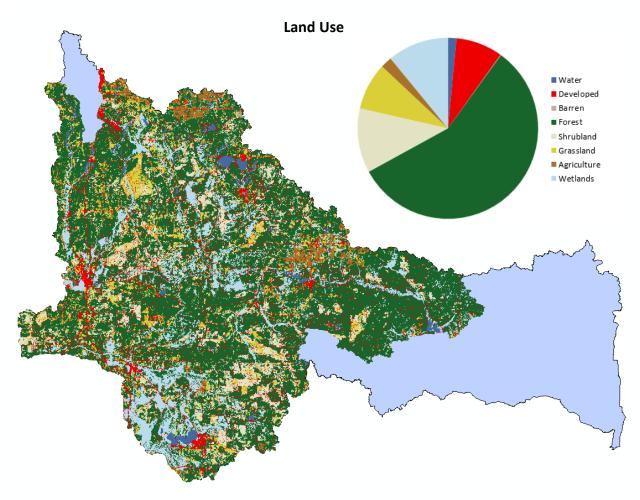
Surficial Geology (Simplified)



Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	126.72	3.81%
Silt, Sand, and Gravel	3187.02	95.74%
Water	15.24	0.46%
Total Watershed Area	3328.97	100.00%


	USACE's National Inventory of Dams (NID)				
NIDID	D Dam Name Longitude Latitude				
National ID	Official Name	Decimal Degrees	Decimal Degrees		
MI00186	Mio	-84.13170	44.66090		
MI01810	Lake St Helen Lake Level Control	-84.46333	44.40833		
MI02460	Upper Boron Dam	-84.30000	44.77333		
MI00318	Bills Dam	-84.15000	44.68167		
MI00322	Davis Dam	-84.18333	44.70167		
MI00326	Dumka Dam	-84.22166	44.64333		
MI00332	Big Bradford Lake Level Control Structure	-84.715	44.855		
MI00339	7th Spectacle Lake Dam	-84.40166	44.885		
MI00350	Robinson Creek Flooding Dam	-84.585	44.44333		
MI00562	Big Creek Dam	-84.37334	44.79167		
MI00590	Conners Marsh Dam	-84.42869	44.67985		
MI00671	Okie Kauffman Dam	-84.075	44.72167		
MI00674	Blamer Dam	-84.12167	44.68833		
MI00738	Glen Lake Dam	-84.295	44.70833		
MI00964	Forest Dunes Lake Dam	-84.53167	44.58833		

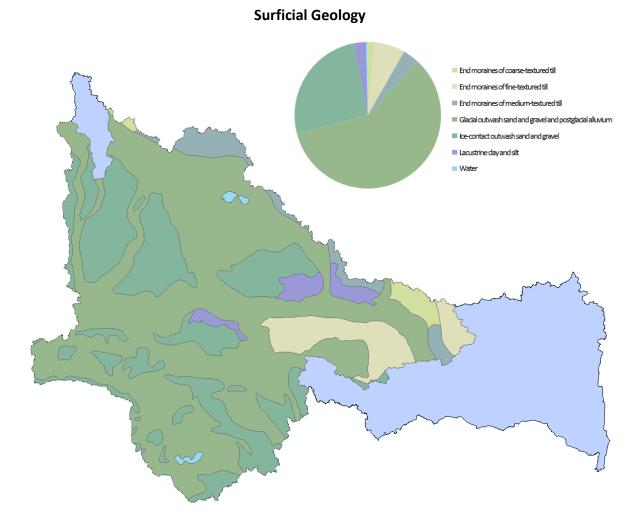
USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4135500	AU SABLE RIVER AT GRAYLING, MI	-84.712529	44.659737	
4135600	EAST BRANCH AU SABLE RIVER AT GRAYLING, MI	-84.705584	44.668904	
4135700	SOUTH BRANCH AU SABLE RIVER NEAR LUZERNE, MI	-84.455575	44.614738	yes
4136000	AU SABLE RIVER NEAR RED OAK, MI	-84.292515	44.676959	yes
4136500	AU SABLE RIVER AT MIO, MI	-84.131117	44.660014	yes
4136900	AU SABLE RIVER NEAR MC KINLEY, MI	-83.837778	44.612778	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			4	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

190

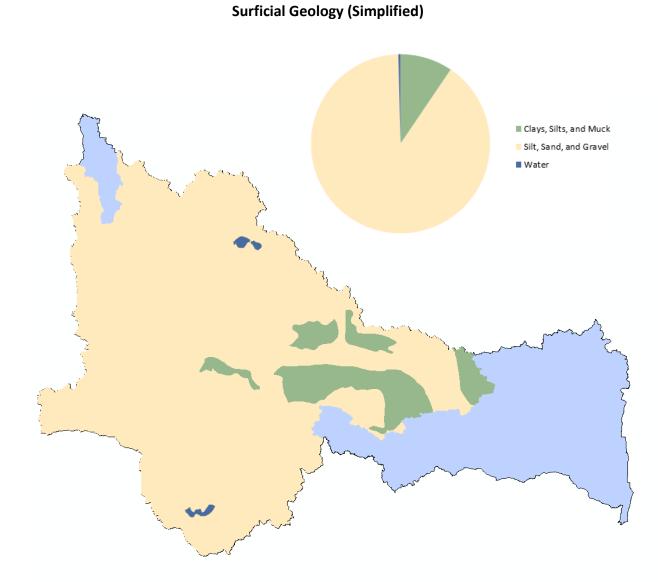
Alcona Dam Watershed		
Elevation Statistics		
Size of Drainage Area	3940.97	km²
Maximum	471.00	т
Minimum	246.00	т
Average	365.58	т
Standard Deviation	31.82	т

All Elevation Measurements with Respect to North American Datum 1983

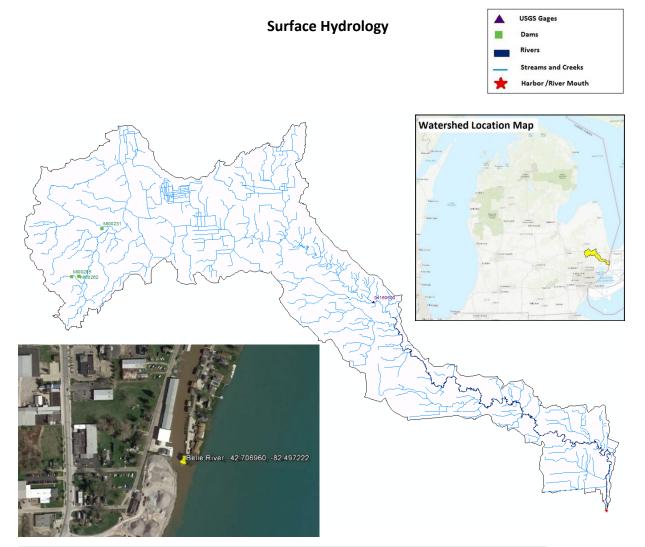


2B, AU SABLE RIVER WATERSHED, ALCONA DAM

Category	Area	Percentage
Category	km²	%
Water	60.08	1.52%
Developed	330.90	8.40%
Barren	3.67	0.09%
Forest	2247.49	57.03%
Shrubland	453.52	11.51%
Grassland	332.08	8.43%
Agriculture	80.71	2.05%
Wetlands	432.51	10.97%
Total	3940.97	100.00%

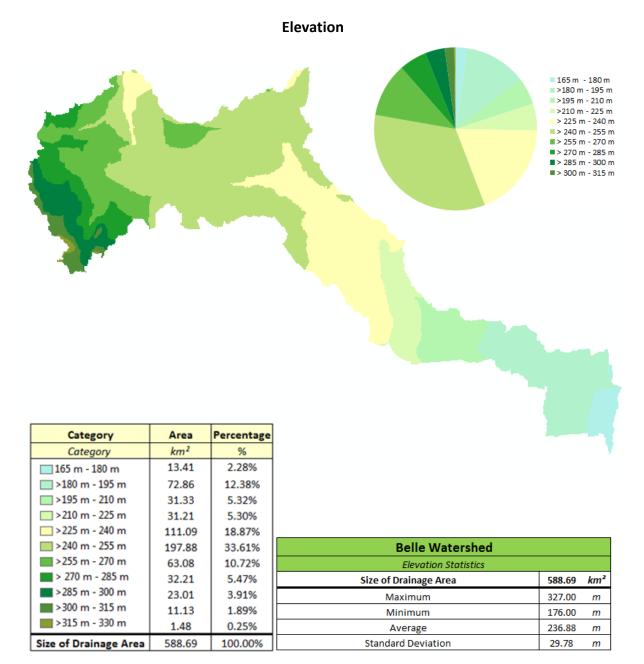

EGLE Runoff Curve Number 52.1

Data Obtained from National Land Cover Database 2011 (NLCD 2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

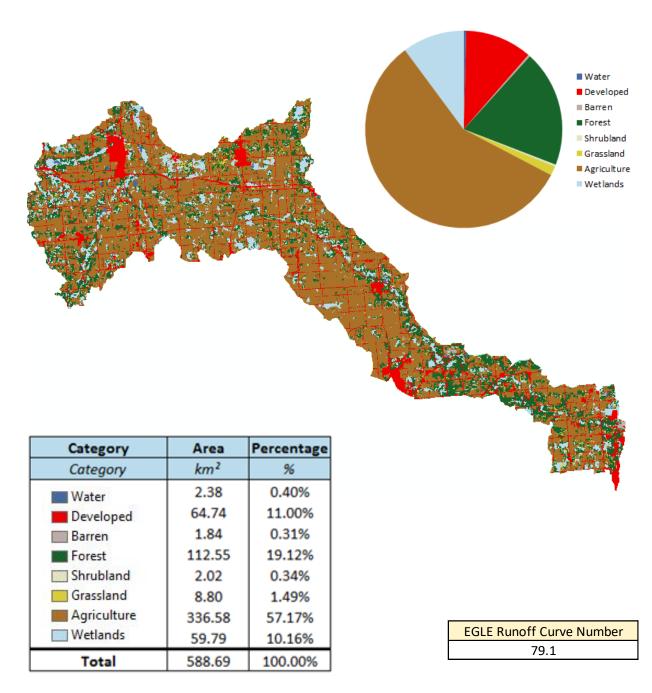

2B, AU SABLE RIVER WATERSHED, ALCONA DAM

Category	Area	Percentage
Category	km²	%
End moraines of coarse-textured till	58.60	1.49%
End moraines of fine-textured till	267.65	6.79%
End moraines of medium-textured till	147.40	3.74%
Glacial outwash sand and gravel and postglacial alluvium	2323.97	58.97%
lce-contact outwash sand and gravel	1022.36	25.94%
Lacustrine clay and silt	105.74	2.68%
Water Vater	15.25	0.39%
Total Watershed Area	3940.97	100.00%

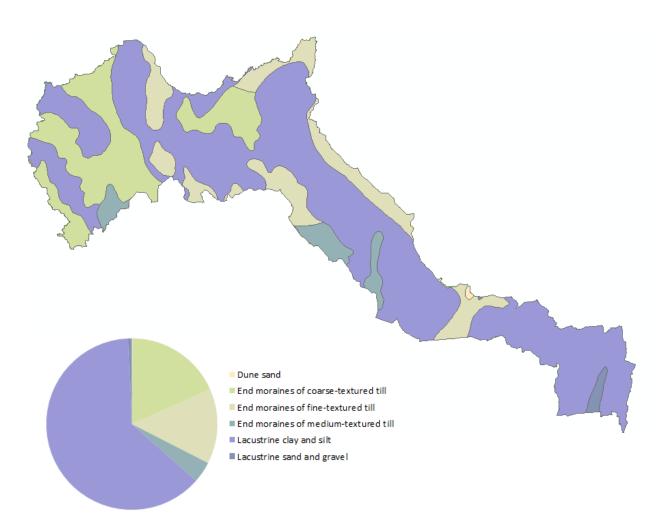
2B, AU SABLE RIVER WATERSHED, ALCONA DAM


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	373.39	9.47%
Silt, Sand, and Gravel	3552.33	90.14%
Water	15.25	0.39%
Total Watershed Area	3940.97	100.00%

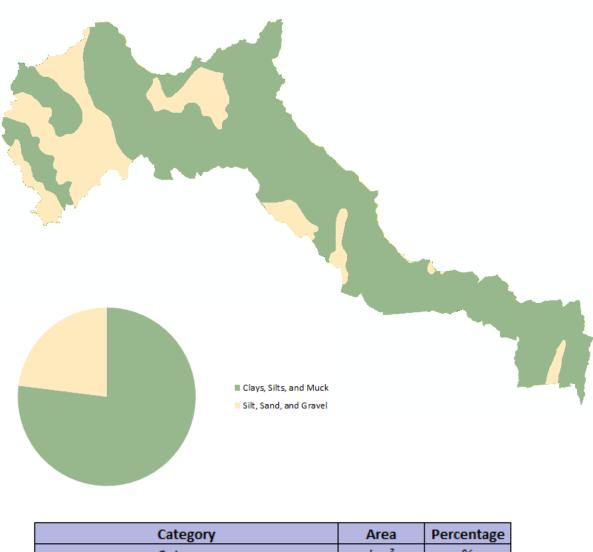
APPENDIX F. BELLE RIVER WATERSHED (3)


USACE's National Inventory of Dams (NID)						
NIDID	Dam Name	Longitud	Longitude Latitude		itude	
National ID	Official Name	Decimal Deg	Decimal Degrees De		Decimal Degrees	
MI00231	Foltz Dam	-83.0950	00	42.9	75000	
MI00262	Niobe Dam	-83.1250	-83.125000		33330	
MI00285	Marciniak Dam #1	-83.1333	30	42.9	33330	
USGS Stream Gage's						
STA ID	Station Name	Longitude	Lat	itude	Active	
04160600	BELLE RIVER AT MEMPHIS, MI	-82.769091	42.9	900862	yes	
Number of Active USGS Stream Gage's in Drainage Area (2009)			1			

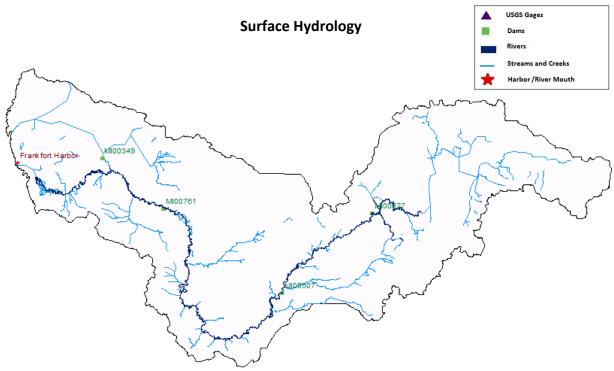
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


All Elevation Measurements with Respect to North American Datum 1983

Land Use


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology

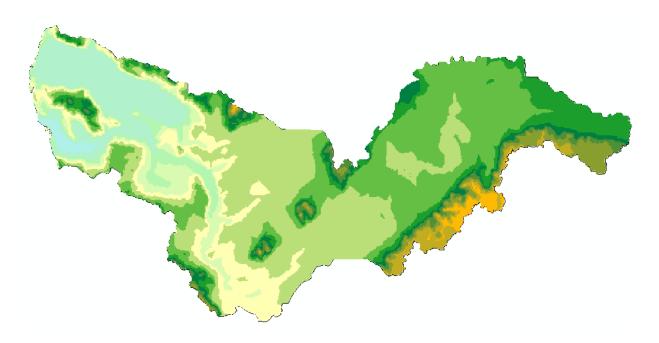


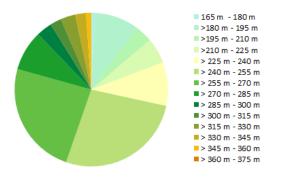
Category	Area	Percentage
Category	km ²	%
Dune sand	0.84	0.14%
End moraines of coarse-textured till	107.06	18.19%
End moraines of fine-textured till	83.50	14.18%
End moraines of medium-textured till	23.40	3.97%
Lacustrine clay and silt	369.78	62.81%
Lacustrine sand and gravel	4.13	0.70%
Total Watershed Area	588.69	100.00%

Surficial Geology (Simplified)

Area	Percentage
km²	%
453.27	77.00%
135.42	23.00%
588.69	100.00%
	km ² 453.27 135.42

APPENDIX G. BETSIE RIVER WATERSHED (4)

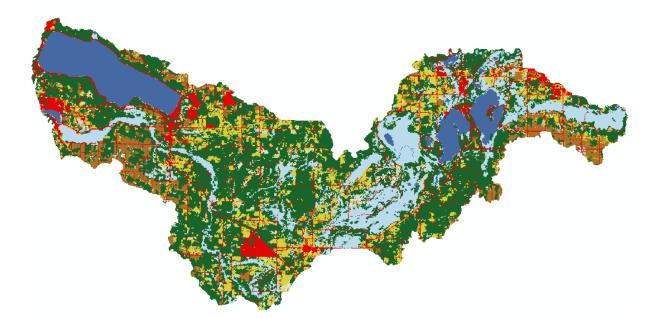




USACE's National Inventory of Dams (NID)					
NIDID Dam Name Longitude Latitud					
MI00349	Crystal Lake Level Control Dam	-86.14833	44.63500		
MI00507	Thompsonville Dam	-85.94833	44.52833		
MI00527	Grass Lake Dam	-85.84834	44.59167		
MI00761	Homestead Dam	-86.08000	44.59500		

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

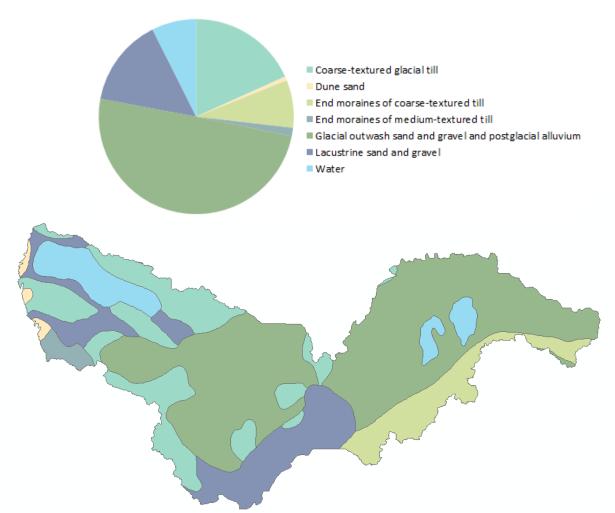
Elevation



Betsie Watershed		
Elevation Statistics		
Size of Drainage Area	627.90	km²
Maximum	363.00	m
Minimum	176.00	m
Average	250.01	m
Standard Deviation	36.19	m

Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	4.77	0.76%
🔜 >180 m - 195 m	59.46	9.47%
🔜 >195 m - 210 m	22.61	3.60%
🔜 >210 m - 225 m	33.54	5.34%
<u>>225 m - 240 m</u>	58.00	9.24%
🔜 >240 m - 255 m	169.10	26.93%
>255 m - 270 m	150.54	23.97%
>270 m - 285 m	53.37	8.50%
>285 m - 300 m	20.86	3.32%
>300 m - 315 m	14.96	2.38%
>315 m - 330 m	19.47	3.10%
= > 330 m - 345 m	14.32	2.28%
─_ >345 m - 360 m	6.89	1.10%
= > 360 m - 375 m	0.03	0.01%
Size of Drainage Area	627.90	100.00%

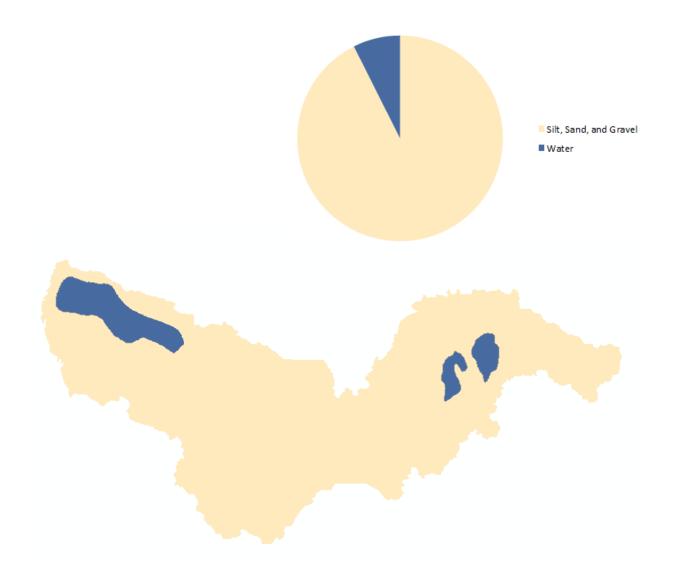
All Elevation Measurements with Respect to North American Datum 1983


Land Use

Category	Area	Percentage
Category	km ²	%
Water	60.48	9.63%
Developed	53.94	8.59%
Barren	0.92	0.15%
Forest	280.71	44.71%
Shrubland	19.42	3.09%
🦲 Grassland	71.83	11.44%
Agriculture	46.54	7.41%
Wetlands	94.07	14.98%
Total	627.90	100.00%

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

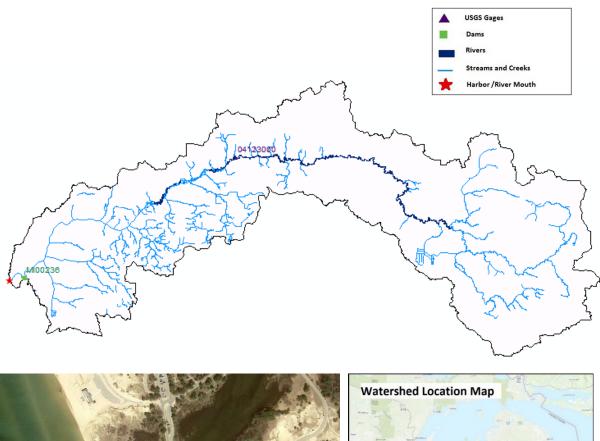
Surficial Geology



Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	114.56	18.24%
Dune sand	4.41	0.70%
End moraines of coarse-textured till	49.60	7.90%
End moraines of medium-textured till	8.58	1.37%
Glacial outwash sand and gravel and postglacial alluvium	312.36	49.75%
Lacustrine sand and gravel	91.88	14.63%
Water	46.50	7.41%
Total Watershed Area	627.90	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

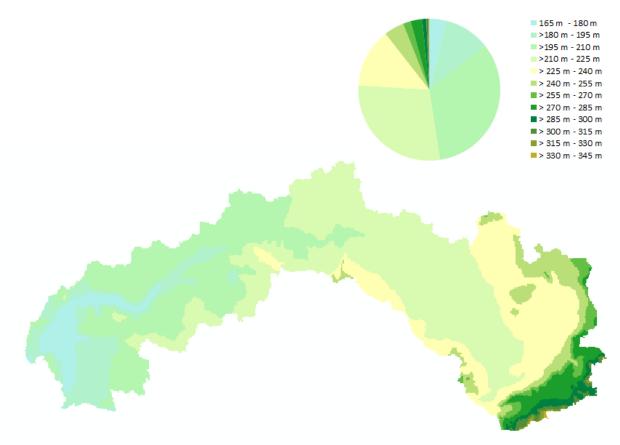
203


Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	581.40	92.59%
Water	46.50	7.41%
Total Watershed Area	627.90	100.00%

APPENDIX H. BIG SABLE WATERSHED (5)

Surface Hydrology

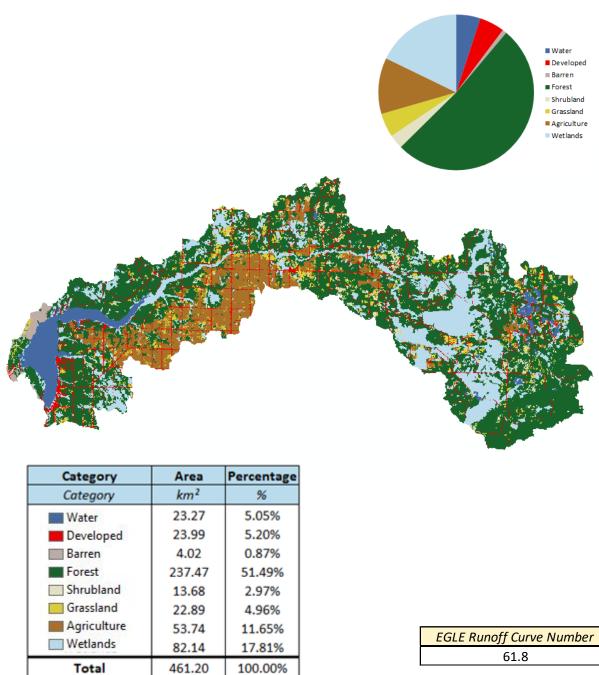

USACE's National Inventory of Dams (NID)				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00236	Hamlin Lake Dam	-86.492230	44.032500	

Vatershed Loca		
and the boats		
	w.	
	14 M	25
Berner Berner	Apres	
		Larner
	The Asses in the State of State	
	terra terra	
Creat Bay		
- Arrenten	tent -	
wedgese	Carda	
interest Late		144
The second states	Lander Call	74.4
- Andrew Annue	Lastr Last	
2 Rill Mar	Laberto	
tingen Ig. And the Process	Tantan Tana Tana Tanan Tanan Tanan	
- Andrew Annue	Labole Transmission (1996) 1977 Salation (1996) 1977 Salation (1996) 1978 Salation (1	
The second secon	Sandon Barton Martin Ma	
And Acce Unitage	Labole Transmission (1996) 1977 Salation (1996) 1977 Salation (1996) 1978 Salation (1	
The second secon	Aller Al	
y and the second	All and a second	
n addie Se Innen Kannen Mannen	Arr	-
the second secon		
y and the second		-
ti ti ti ti ti ti ti ti ti ti ti ti ti t		

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4123000	BIG SABLE RIVER NEAR FREESOIL, MI	-86.280083	44.120282	
Nu	mber of Active USGS Stream Gage's in D	rainage Area	(2009)	0

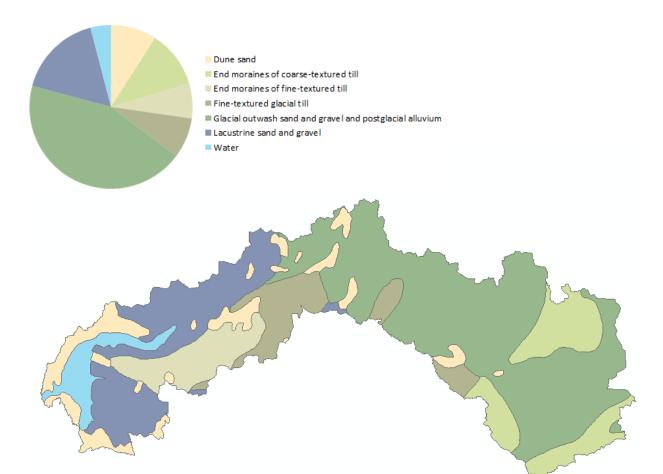
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Elevation



Category	Area	Percentage
Category	km ²	%
165 m - 180 m	19.01	4.12%
 >180 m - 195 m	38.93	8.44%
>195 m - 210 m	110.07	23.87%
─ >210 m - 225 m	159.01	34.48%
<u>>225 m - 240 m</u>	77.49	16.80%
🔜 >240 m - 255 m	25.46	5.52%
>255 m - 270 m	9.00	1.95%
== >270 m - 285 m	12.82	2.78%
== >285 m - 300 m	5.40	1.17%
📰 >300 m - 315 m	2.95	0.64%
≥315 m -330 m	0.90	0.19%
📒 >330 m - 345 m	0.18	0.04%
Size of Drainage Area	461.20	100.00%

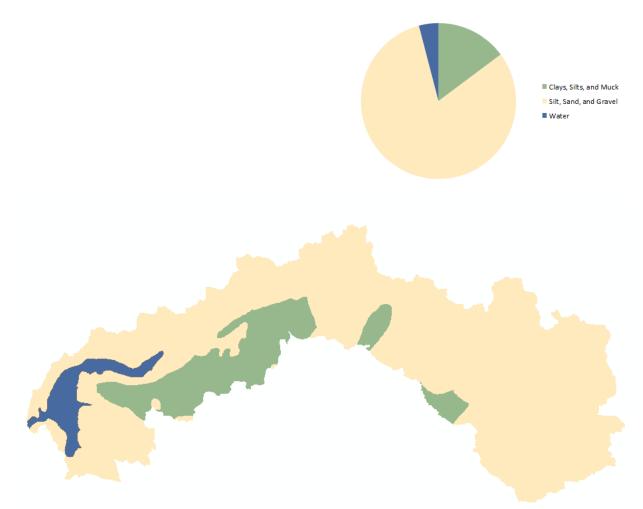
Big Sable Watershed					
Elevation Statistics					
Size of Drainage Area	461.20	km²			
Maximum	335.00	m			
Minimum	176.00	m			
Average	217.33	m			
Standard Deviation	23.81	m			


All Elevation Measurements with Respect to North American Datum 1983

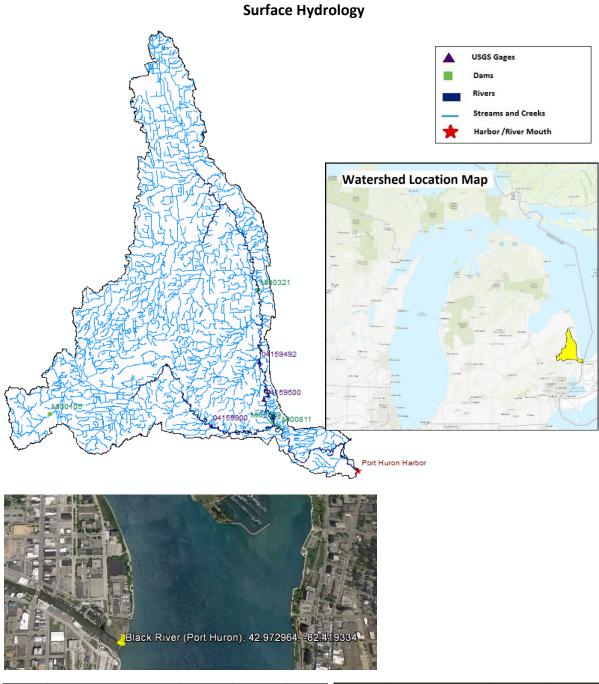
Land Use

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology



Category	Area	Percentage
Category	km ²	%
Dune sand	41.86	9.08%
End moraines of coarse-textured till	52.11	11.30%
End moraines of fine-textured till	31.87	6.91%
Fine-textured glacial till	36.49	7.91%
Glacial outwash sand and gravel and postglacial alluvium	202.66	43.94%
Lacustrine sand and gravel	77.46	16.80%
Water	18.75	4.07%
Total Watershed Area	461.20	100.00%


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

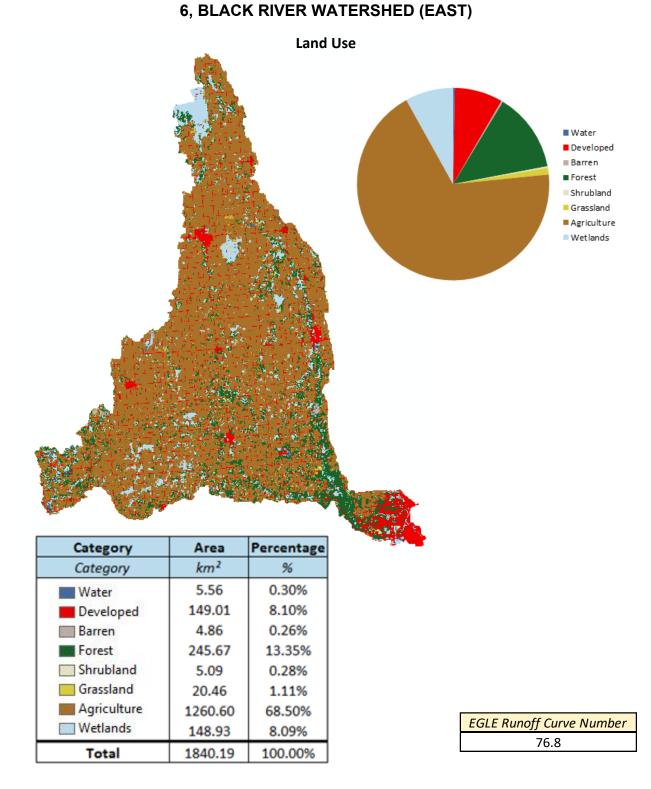
208

Surficial Geology (Simplified)

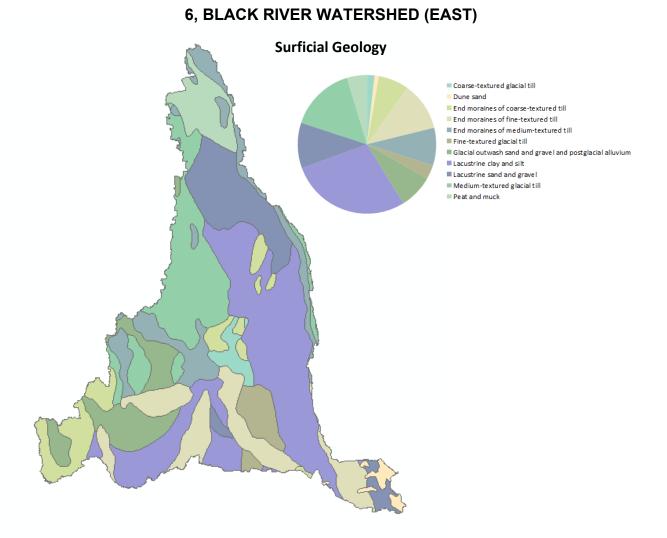
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	68.36	14.82%
Silt, Sand, and Gravel	374.09	81.11%
Water	18.75	4.07%
Total Watershed Area	461.20	85.18%

APPENDIX I. BLACK RIVER WATERSHED, EAST (6)

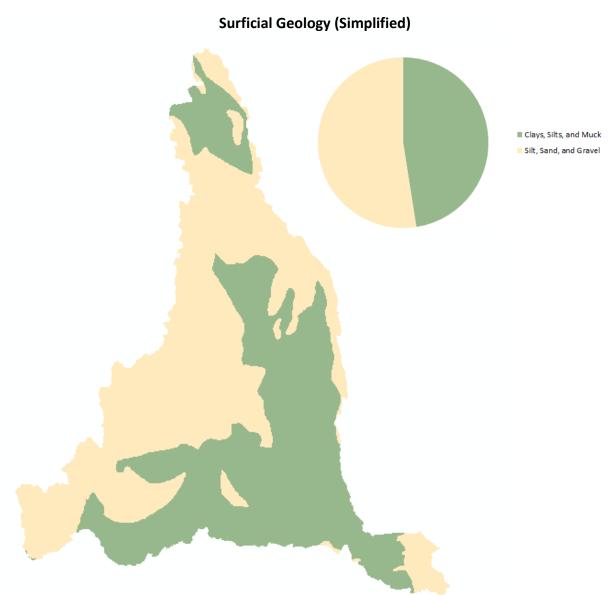
	USGS Stream Gage's				USACE's National Inventory of Dams (NID)			NID)
STA ID	Station Name	Longitude	Latitude	Active	NIDID	Dam Name	Longitude	Latitude
		5			National ID	Official Name	Decimal Degrees	Decimal Degrees
04159492	BLACK RIVER NEAR JEDDO, MI	-82.624092	43.152527	yes	MI00105	Mill Creek Structure	-83.083340	43.083330
04159500	BLACK RIVER NEAR FARGO, MI	-82.61798	43.092250		MI00321	Croswell Dam	-82,620640	43.267860
04159900	MILL CREEK NEAR AVOCA, MI	-82.73465	43.054471	yes	MI00363	Fords Dam	-82,600000	43.056670
Numbe	er of Active USGS Stream Gage's i	n Drainage Ar	rea (2009)	2	MI00811	Port Huron SGA #4	-82.586390	43.048330


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

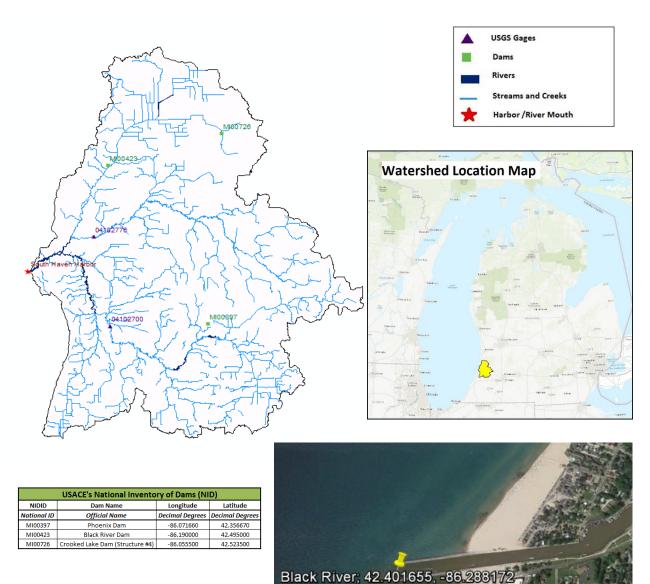
6, BLACK RIVER WATERSHED (EAST)


Elevation

				165 m - 1 >180 m - 3 >195 m - 2 >210 m - 2 > 225 m - > 240 m - > 255 m - ≥ 255 m - ≥ 270 m - ≥ 285 m - ≥ 285 m - ≥ 300 m -	195 m 210 m 225 m 240 m 255 m 270 m 285 m 300 m
Category	Area	Percentage			
Category	km ²	%			
165 m - 180 m	0.29	0.02%			
── >180 m - 195 m ── >195 m - 210 m	61.69	3.35%			
>210 m - 210 m	40.57 122.17	2.20% 6.64%	Ripple (East) Matorshad		
>225 m - 240 m	993.13	53.97%	Black (East) Watershed		
>240 m - 255 m	509.35	27.68%	Elevation Statistics		
>255 m - 270 m	91.42	4.97%	Size of Drainage Area	1840.19	km²
>270 m - 285 m	19.03	1.03%	Maximum	308.00	m
== > 285 m - 300 m	1.84	0.10%	Minimum	177.00	m
📰 >300 m - 315 m	0.70	0.04%	Average	235.19	m
Size of Drainage Area	1840.19	100.00%	Standard Deviation	14.81	m


All Elevation Measurements with Respect to North American Datum 1983

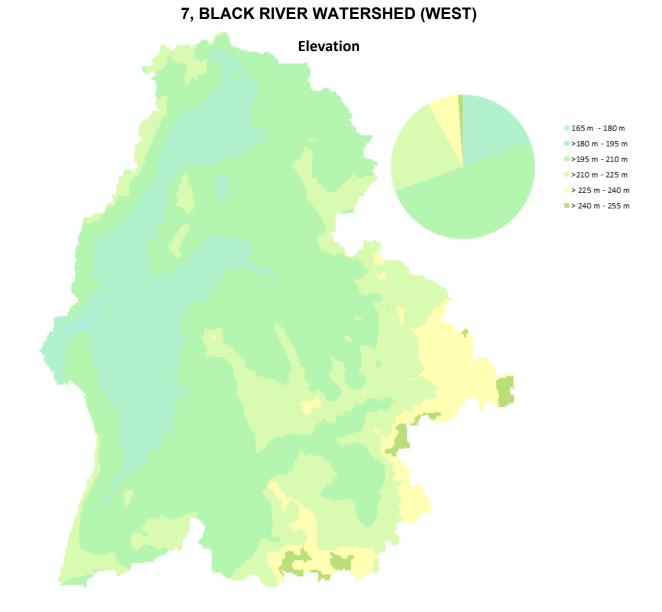
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend



Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	32.43	1.76%
Dune sand	18.80	1.02%
End moraines of coarse-textured till	130.12	7.07%
End moraines of fine-textured till	208.16	11.31%
End moraines of medium-textured till	161.58	8.78%
Fine-textured glacial till	60.95	3.31%
Glacial outwash sand and gravel and postglacial alluvium	146.40	7.96%
Lacustrine clay and silt	519.14	28.21%
Lacustrine sand and gravel	195.09	10.60%
Medium-textured glacial till	281.48	15.30%
Peat and muck	86.03	4.68%
Total Watershed Area	1840.19	100.00%

6, BLACK RIVER WATERSHED (EAST)

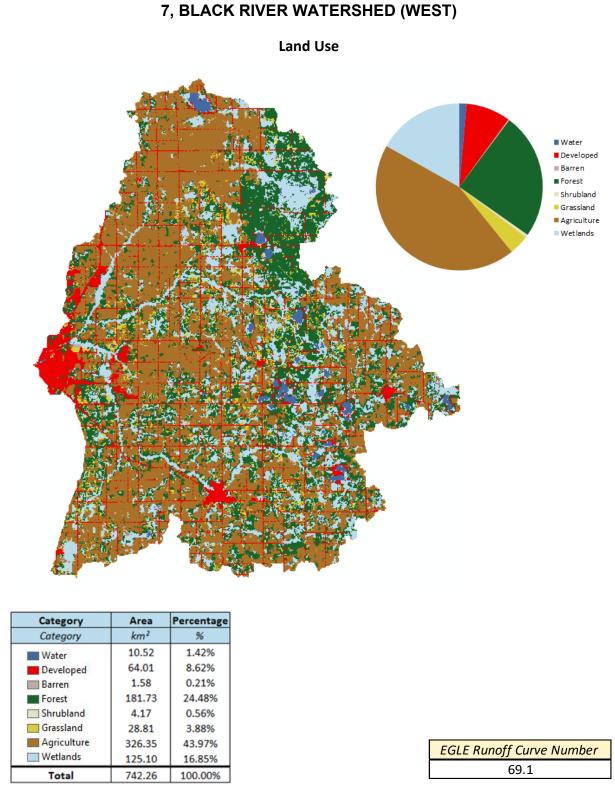
Category	Area	Percentage
Category	km²	%
Clay,Silt, and Muck	874.28	47.51%
Silt, Sand, and Gravel	965.91	52.49%
Total Watershed Area	1840.19	100.00%



APPENDIX J. BLACK RIVER WATERSHED, WEST (7)

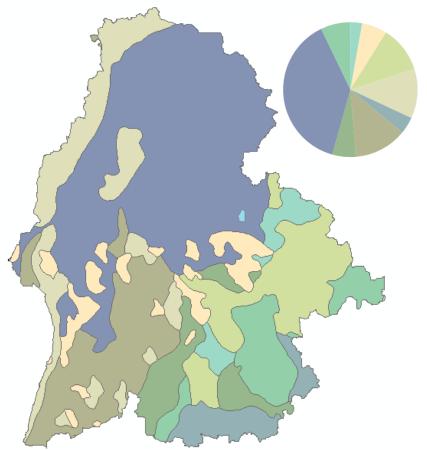
Surface Hydrology

USGS Stream Gage's					
STA ID	Station Name	Longitude	Latitude	Active	
4102700	SOUTH BRANCH BLACK RIVER NEAR BANGOR, MI	-86.18753	42.354200	yes	
4102776	MIDDLE BRANCH BLACK RIVER NEAR SOUTH HAVEN, MI	-86.20697	42.432531	yes	
	Number of Active USGS Stream Gage's in Draina	ge Area (2009)		2	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Category	Area	Percentage
Category	km²	%
🔜 165 m - 180 m	0.97	0.13%
🔜 >180 m - 195 m	141.56	19.07%
🔤 >195 m - 210 m	373.70	50.35%
<u>>210 m - 225 m</u>	165.96	22.36%
<u>>225 m - 240 m</u>	51.79	6.98%
<mark>∭</mark> >240 m - 255 m	8.28	1.12%
Size of Drainage Area	742.26	100.00%

Black Watershed (West)		
Elevation Statistics		
Size of Drainage Area	742.26	km²
Maximum	246.00	m
Minimum	179.00	m
Average	204.62	m
Standard Deviation	12.16	m


All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

7, BLACK RIVER WATERSHED (WEST)

Surficial Geology

Coarse-textured glacial till

Dune sand

End moraines of coarse-textured till

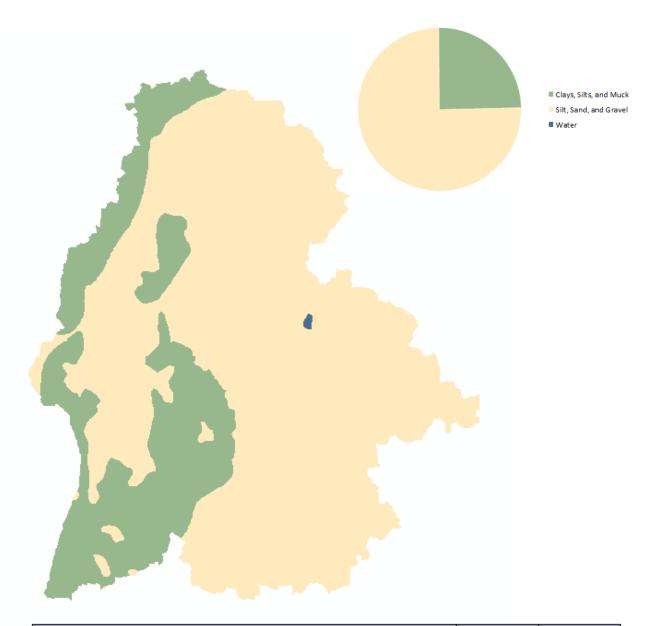
End moraines of fine-textured till

End moraines of medium-textured till

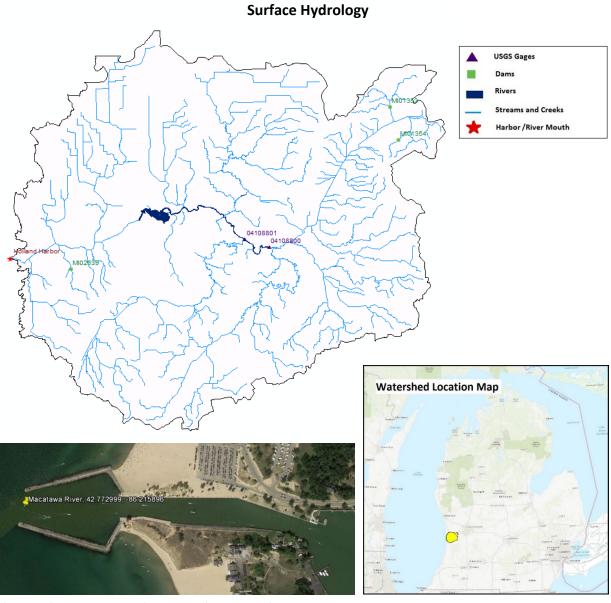
Fine-textured glacial till

Glacial outwash sand and gravel and postglacial alluvium

Lacustrine sand and gravel


Medium-textured glacial till

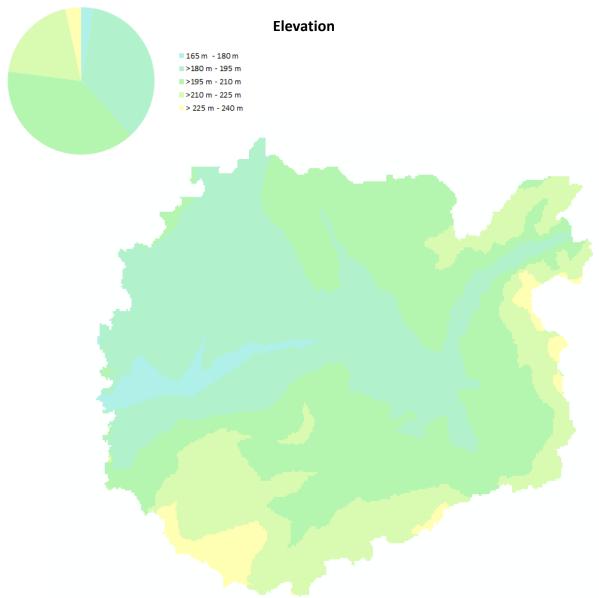
Water


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	20.94	2.82%
Dune sand	45.26	6.10%
End moraines of coarse-textured till	82.34	11.09%
End moraines of fine-textured till	88.38	11.91%
End moraines of medium-textured till	30.02	4.04%
Fine-textured glacial till	94.46	12.73%
Glacial outwash sand and gravel and postglacial alluvium	42.13	5.68%
Lacustrine sand and gravel	285.53	38.47%
Medium-textured glacial till	52.74	7.11%
Water	0.47	0.06%
Total Watershed Area	742.26	100.00%

7, BLACK RIVER WATERSHED (WEST)

Surficial Geology (Simplified)

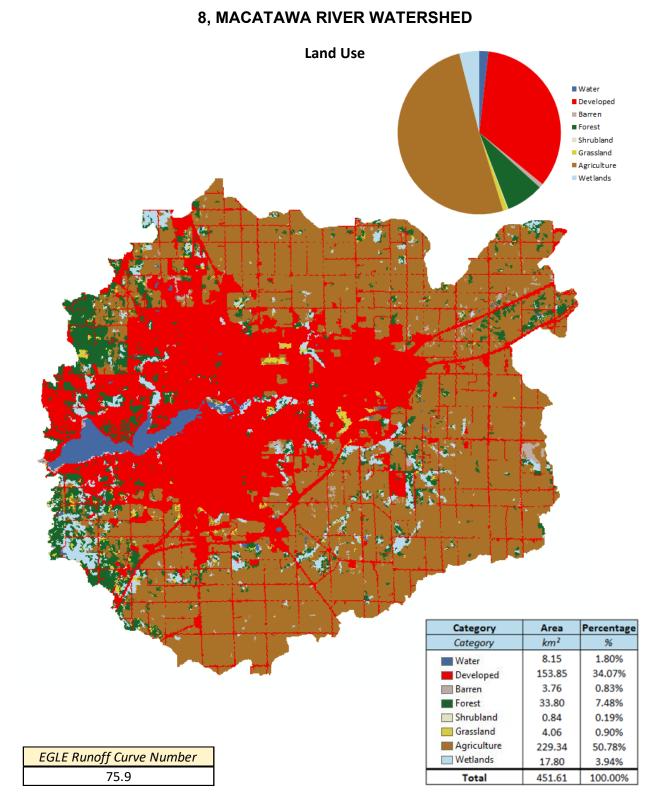
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	182.85	24.63%
Silt, Sand, and Gravel	558.94	75.30%
Water	0.47	0.06%
Total Watershed Area	742.26	100.00%


APPENDIX K. MACATAWA RIVER WATERSHED (8)

USACE's National Inventory of Dams (NID)					
NIDID	Dam Name	Longitude	Latitude		
National ID	Official Name	Decimal Degrees	Decimal Degrees		
MI01353	Beren s Dam	-85.927290	42.856950		
MI01354	Steenwyk Dam	-85.921200	42.838690		
MI02639	Ottogan Dam	-86.167050	42.767180		

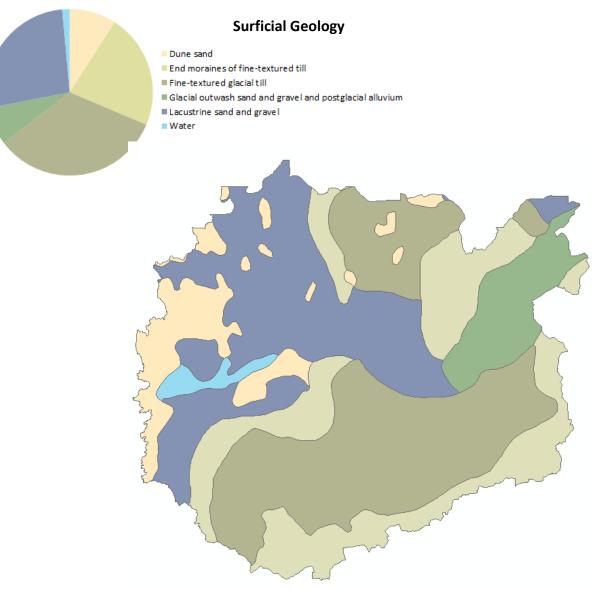
USGS Stream Gage's					
STA ID	Station Name	Longitude	Latitude	Active	
4108800	MACATAWA RIVER AT STATE ROAD NEAR ZEELAND, MI	-85.43673	44.656670	yes	
4108801	MACATAWA RIVER NEAR ZEELAND, MI	-85.51951	44.638336		
	Number of Active USGS Stream Gage's in Drainage A	rea (2009)		1	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

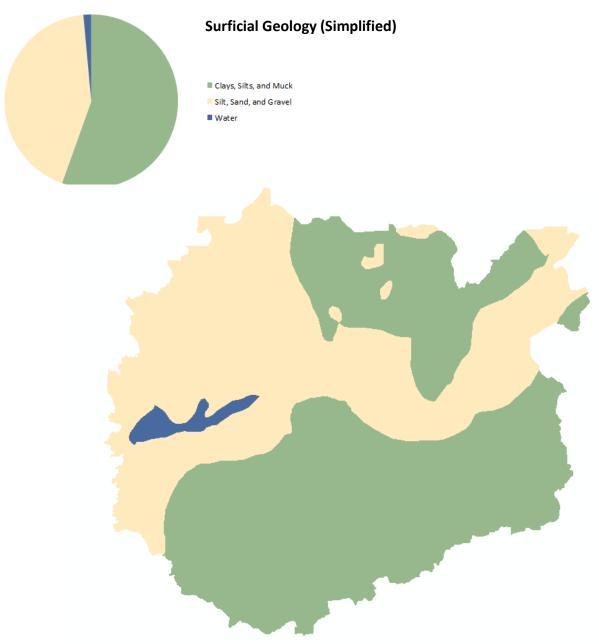

8, MACATAWA RIVER WATERSHED

Category	Area	Percentage
Category	km²	%
🛄 165 m - 180 m	12.29	2.72%
🔜 >180 m - 195 m	160.21	35.47%
🔲 >195 m - 210 m	175.36	38.83%
🔁 >210 m - 225 m	88.04	19.49%
🔁 >225 m - 240 m	15.71	3.48%
Size of Drainage Area	451.61	100.00%

Macatawa Watershed		
Elevation Statistics		
Size of Drainage Area	451.61	km²
Maximum	234.00	m
Minimum	176.00	m
Average	199.53	m
Standard Deviation	12.32	m

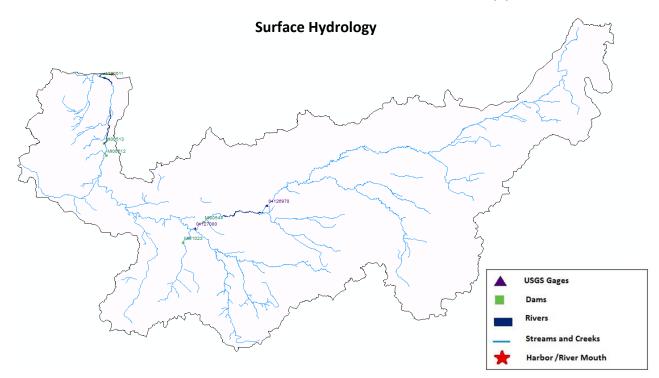

All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


222

8, MACATAWA RIVER WATERSHED

Category	Area	Percentage
Category	km ²	%
Dune sand	41.11	9.10%
End moraines of fine-textured till	100.52	22.26%
Fine-textured glacial till	150.05	33.23%
Glacial outwash sand and gravel and postglacial alluvium	33.25	7.36%
Lacustrine sand and gravel	120.07	26.59%
Water	6.61	1.46%
Total Watershed Area	451.61	100.00%

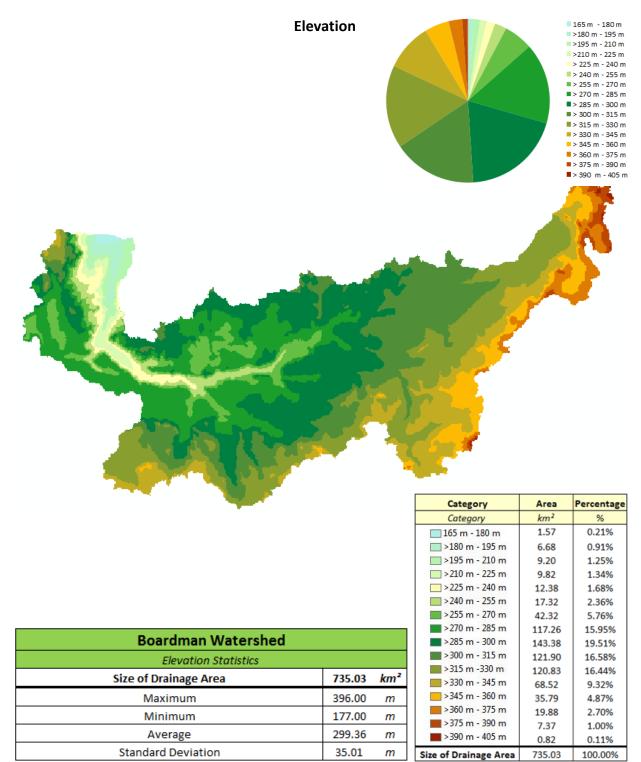

8, MACATAWA RIVER WATERSHED

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	250.57	55.48%
Silt, Sand, and Gravel	194.43	43.05%
Water	6.61	1.46%
Total Watershed Area	451.61	100.00%

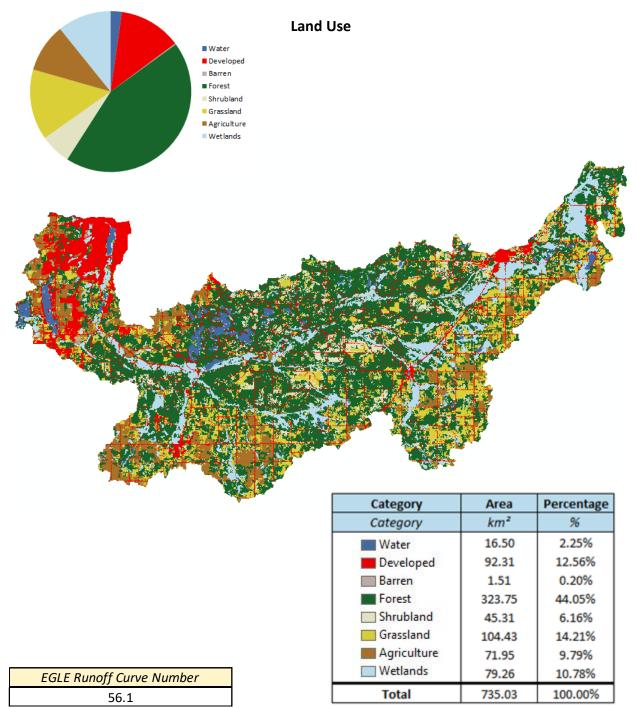
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

224

APPENDIX L. BOARDMAN RIVER WATERSHED (9)

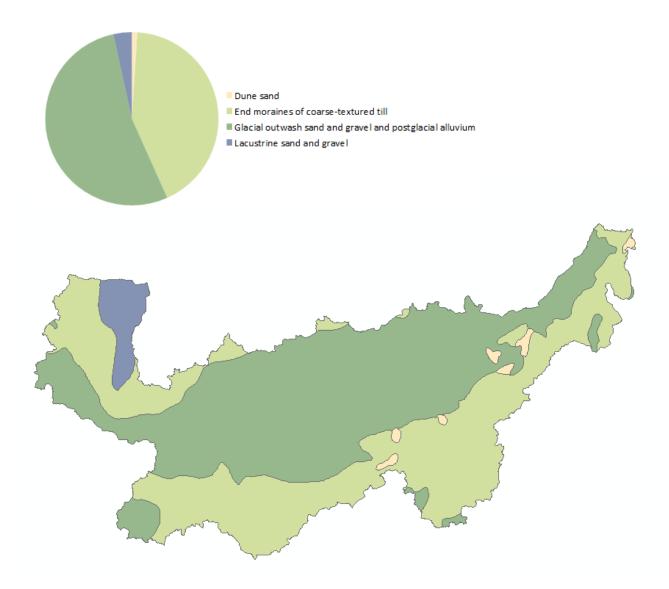


USACE's National Inventory of Dams (NID)				
NIDID Dam Name Longitude Latitude				
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI01023	Mayfield Electric Light Plant Dam	-85.533330	44.626670	
MI00511	Union Street Dam	-85.622440	44.761650	
MI00512	Boardman Dam	-85.620550	44.698330	
MI00513	Sabin Dam	-85.622830	44.708030	
MI00544	Brown Bridge Dam	-85.509510	44.643420	

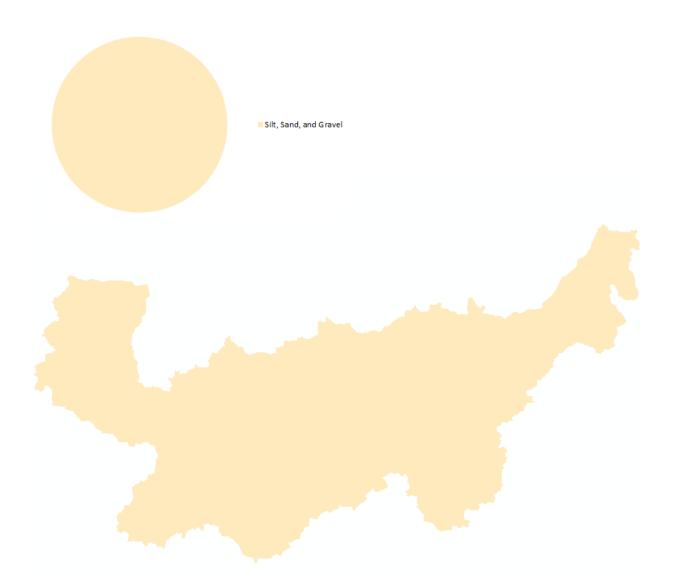


USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
04126970	BOARDMAN R ABOVE BROWN BRIDGE ROAD NR MAYFIELD, MI	-85.43673	44.656670	yes
04127000	BOARDMAN RIVER NEAR MAYFIELD, MI	-85.51951	44.638336	
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	

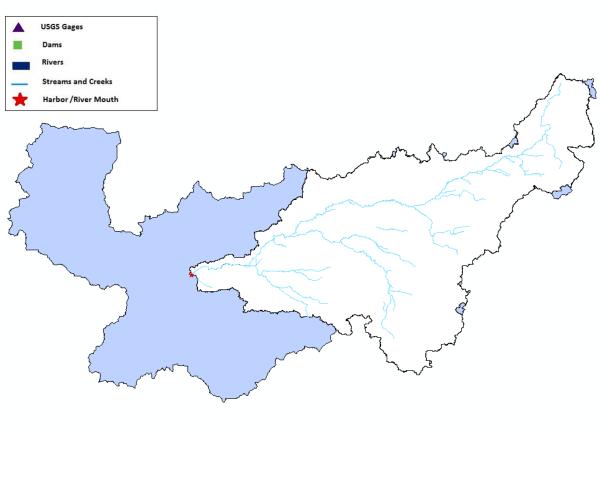
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950



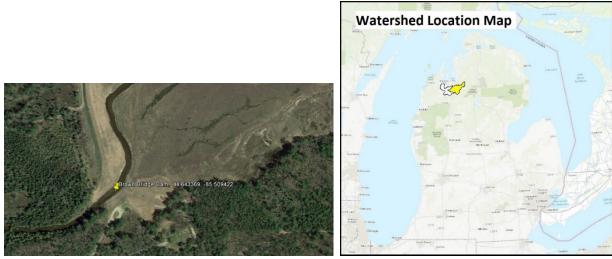
All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

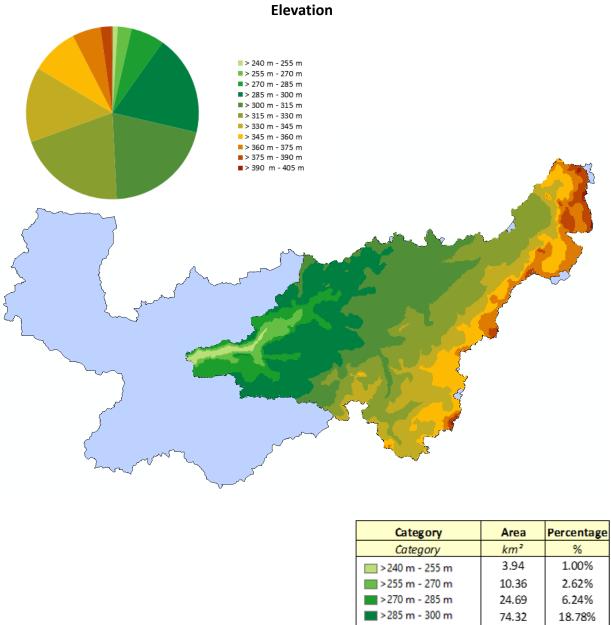
Surficial Geology


Category	Area	Percentage
Category	km ²	%
Dune sand	7.56	1.03%
End moraines of coarse-textured till	310.72	42.27%
Glacial outwash sand and gravel and postglacial alluvium	391.35	53.24%
Lacustrine sand and gravel	25.39	3.45%
Total Watershed Area	735.03	100.00%

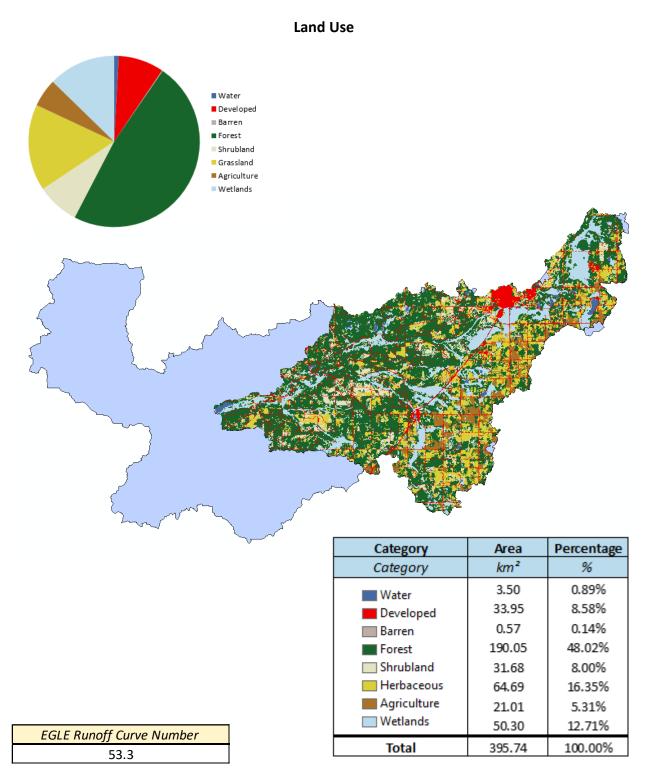
Surficial Geology (Simplified)

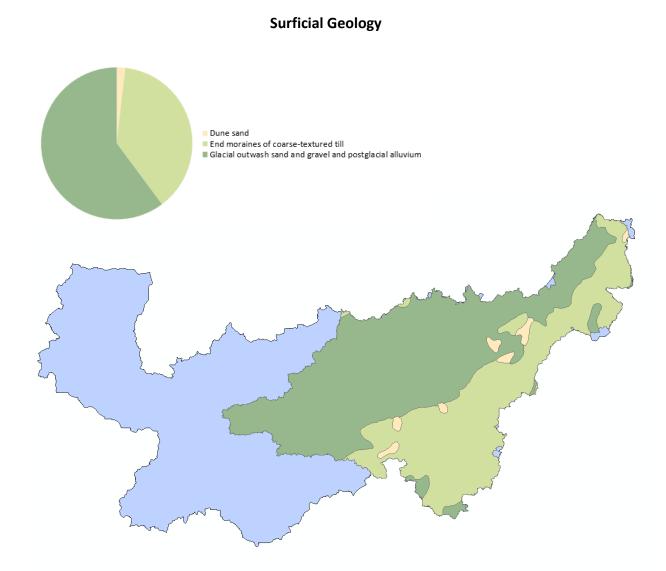


Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	735.03	100.00%
Total Watershed Area	735.03	100.00%


APPENDIX M. BOARDMAN RIVER WATERSHED, BROWN BRIDGE POND (9A)

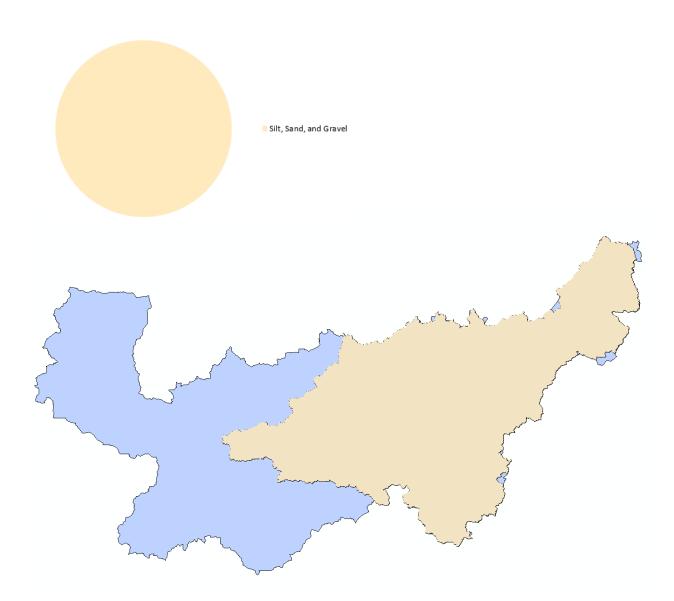
Surface Hydrology


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Brown Bridge Dam			
Elevation Statistics			
Size of Drainage Area	395.74	km²	
Maximum	396.00	т	
Minimum	243.00	т	
Average	316.04	т	
Standard Deviation	27.64	m	

Category	Area	Percentage
Category	km²	%
🔜 > 240 m - 255 m	3.94	1.00%
>255 m - 270 m	10.36	2.62%
>270 m - 285 m	24.69	6.24%
>285 m - 300 m	74.32	18.78%
>300 m - 315 m	81.39	20.57%
🔜 >315 m - 330 m	80.38	20.31%
🔜 >330 m - 345 m	55.60	14.05%
<u> </u>	35.20	8.89%
= > 360 m -375 m	20.96	5.30%
= > 375 - 390 m	8.25	2.08%
= > 390 m - 405 m	0.64	0.16%
Size of Drainage Area	395.74	100.00%

All Elevation Measurements with Respect to North American Datum 1983



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend



Category	Area	Percentage
Category	km²	%
Dune sand	7.14	1.80%
End moraines of coarse-textured till	150.44	38.02%
Glacial outwash sand and gravel and postglacial alluvium	238.16	60.18%
Total Watershed Area	395.74	100.00%

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	395.74	100.00%
Total Watershed Area	395.74	100.00%

APPENDIX N. PINE RIVER WATERSHED (10)

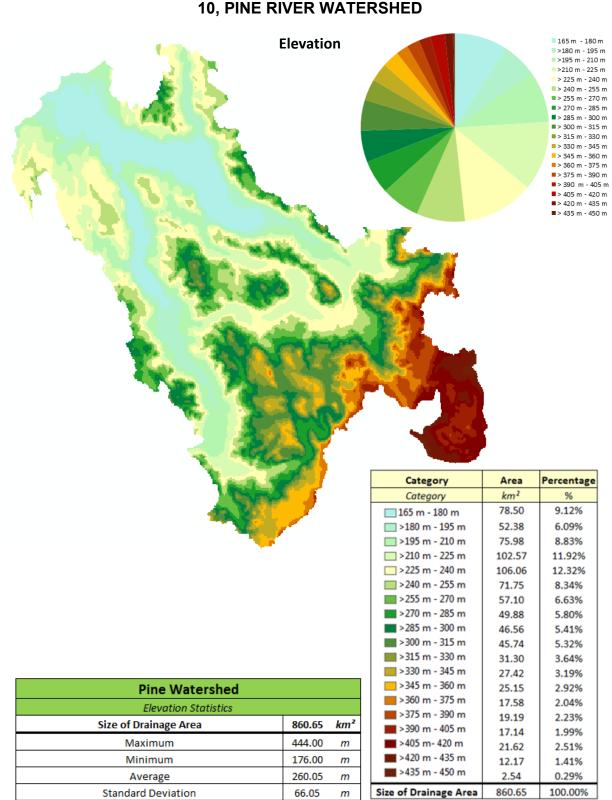
Surface Hydrology

 byne River
 --84.952000
 45.195800

 ne Falls Dam
 --84.919720
 45.168610

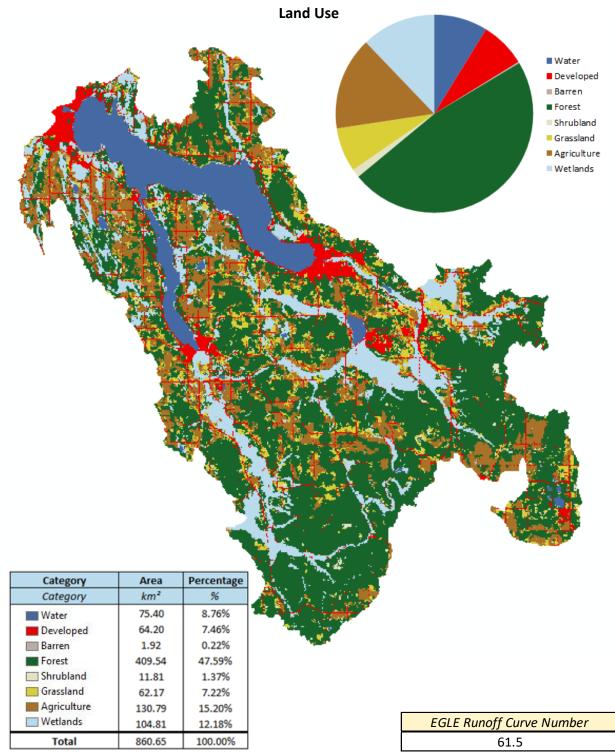
 Lordan Dam
 --85.111660
 45.135000

 USGS Stream Gage's


 STA ID
 Longitude
 Latitude
 Active

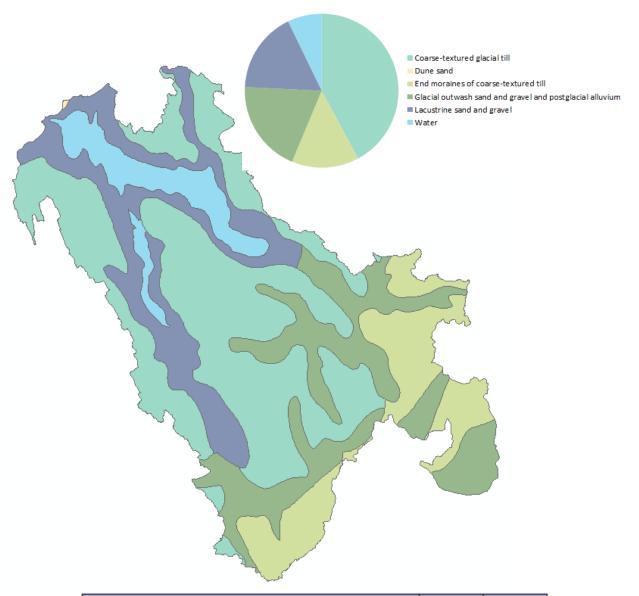
 4127800
 JORDAN RIVER NEAR EAST JORDAN, MI
 --85.09811
 45.102507
 yes

1


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Number of Active USGS Stream Gage's in Drainage Area (2009)

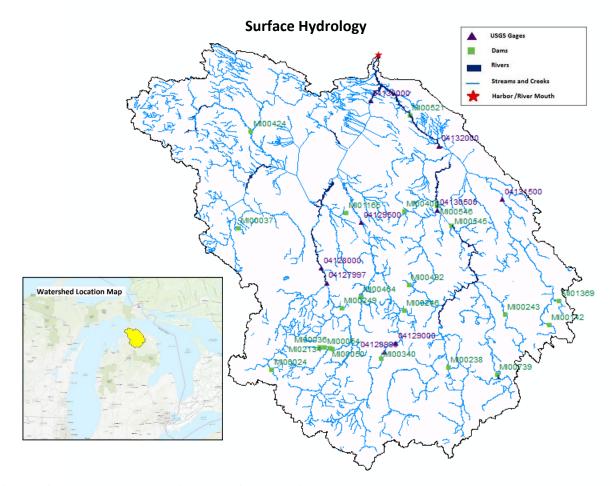
All Elevation Measurements with Respect to North American Datum 1983


10, PINE RIVER WATERSHED

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

10, PINE RIVER WATERSHED

Surficial Geology

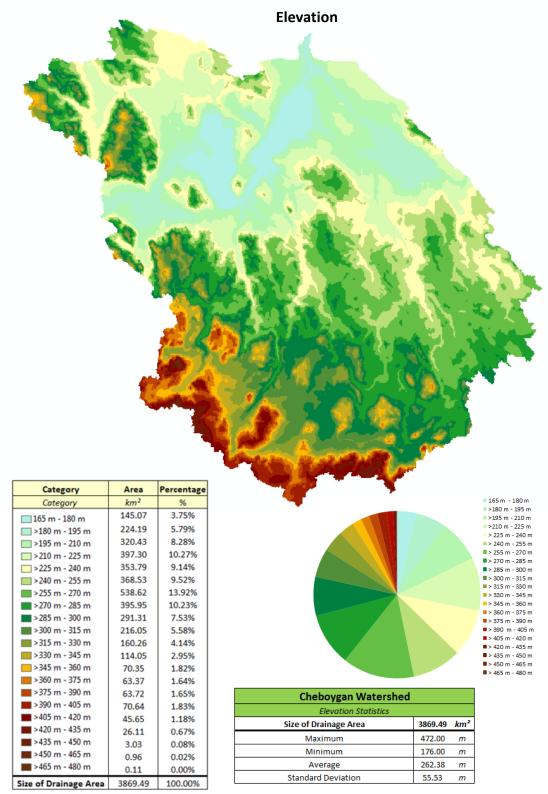

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	362.95	42.17%
Dune sand	0.30	0.04%
End moraines of coarse-textured till	121.38	14.10%
Glacial outwash sand and gravel and postglacial alluvium	167.32	19.44%
Lacustrine sand and gravel	146.75	17.05%
Water	61.94	7.20%
Total Watershed Area	860.65	100.00%

10, PINE RIVER WATERSHED

Surficial Geology (Simplified)

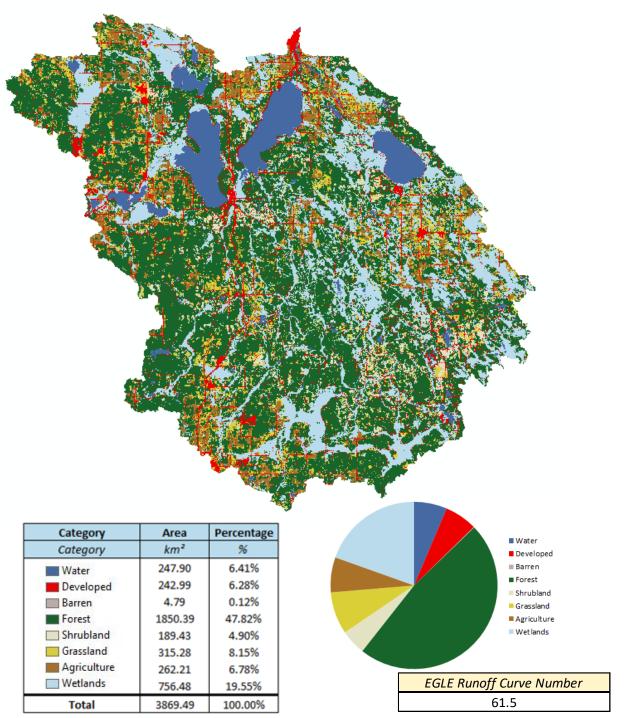
Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	798.70	92.80%
Water	61.94	7.20%
Total Watershed Area	860.65	100.00%

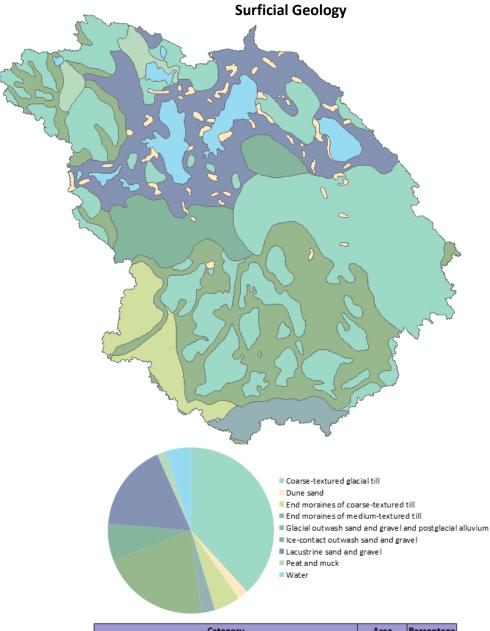
APPENDIX O. CHEBOYGAN RIVER WATERSHED (11)


USACE's National Inventory of Dams (NID)						
NIDID	Dam Name	Longitude	Latitude			
National ID	Official Name	Decimal Degrees	Decimal Degrees			
MI01369	FRANCIS DAM	-84.050000	45.236700			
MI00545	Tower	-84.300000	45.366700			
MI00546	Kleber	-84.333300	45.400000			
MI01165	Roberts Lake Dam	-84.550000	45.391670			
MI00521	Alverno	-84.395000	45.551700			
MI00142	Rainy River Dam	-84.075000	45.196670			
MI02134	Fontinalis Club Upper Dam	-84.608330	45.166670			
MI00238	Foch Lakes Dam	-84.315000	45.130000			
MI00024	Woodin Lake Dam	-84.732520	45.130840			
MI00243	Tomahawk Creek Flooding Dam	-84.178610	45.216110			
MI00246	Cornwall Creek Dam	-84.416390	45.225830			
MI00249	Wildwood Lake Dam	-84.565000	45.231670			
MI00340	Golden Lotus Dam	-84.473340	45.146670			
MI00036	Quigley Dam	-84.618330	45.166670			
MI00037	Starks Mill Dam	-84.806660	45.368330			
MI00405	Stony Creek Dam	-84.412500	45.391670			
MI00424	Maple River Dam	-84.773330	45.530000			
MI00464	Echo Lake Dam	-84.518330	45.250560			
MI00492	Dog Lake Dam	-84.404170	45.268890			
MI00050	Fontinalis Club Middle Dam	-84.595000	45.165000			
MI00054	Fontinalis Club Home Dam	-84.588330	45.163330			
MI00739	Muskellunge Lake Level Control Struct	-84.200000	45.115000			

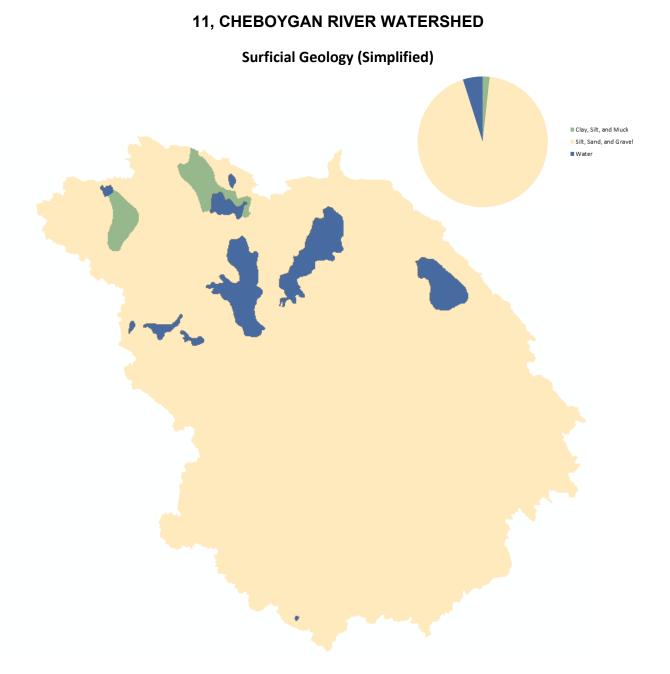
USUS Stream Gage's					
STA ID	Station Name	Longitude	Latitude	Active	
04127997	STURGEON RIVER AT WOLVERINE, MI	-84.60003	45.274457	yes	
04128000	STURGEON RIVER NEAR WOLVERINE, MI	-84.61114	45.298902		
04128990	PIGEON R AT STURGEON VALLEY RD NEAR VANDERBILT, MI	-84.46669	45.156680	yes	
04129000	PIGEON RIVER NEAR VANDERBILT, MI	-84.43836	45.170846		
04129500	PIGEON RIVER AT AFTON, MI	-84.51503	45.373901		
04130000	CHEBOYGAN RIVER NEAR CHEBOYGAN, MI	-84.48754	45.577234		
04130500	BLACK RIVER NEAR TOWER, MI	-84.33336	45.392512		
04131500	RAINY RIVER NEAR OCQUEOC, MI	-84.17918	45.408345		
04132000	BLACK RIVER NEAR CHEBOYGAN, MI	-84.32669	45.499733		
	Number of Active USGS Stream Gage's in Drainage Area	(2009)		2	

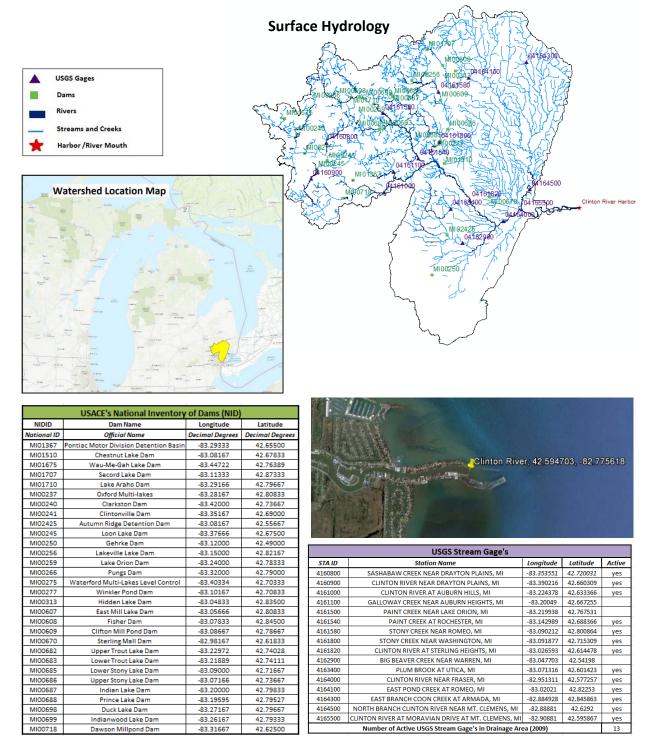
Data Obtained from USGS National Hydrography Dataset and USACE's National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


11, CHEBOYGAN RIVER WATERSHED


All Elevation Measurements with Respect to North American Datum 1983

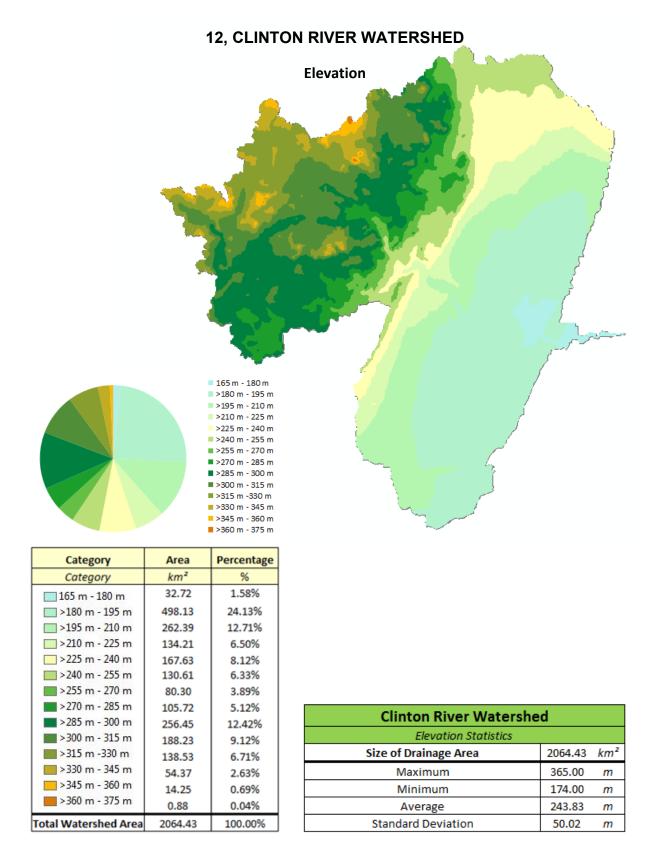
11, CHEBOYGAN RIVER WATERSHED


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

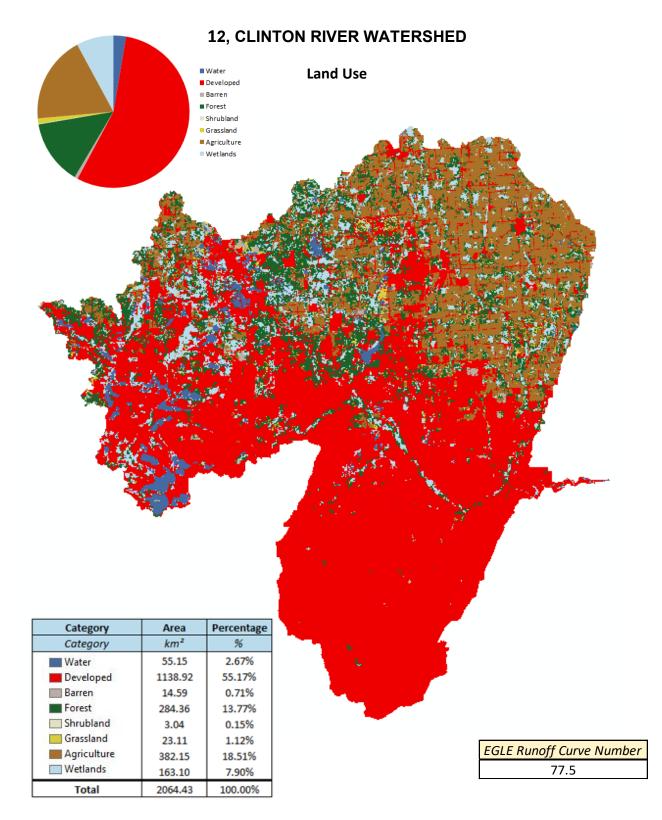

11, CHEBOYGAN RIVER WATERSHED

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	1476.72	38.16%
Dune sand	80.89	2.09%
End moraines of coarse-textured till	197.66	5.11%
End moraines of medium-textured till	102.66	2.65%
Glacial outwash sand and gravel and postglacial alluvium	815.69	21.08%
Ice-contact outwash sand and gravel	279.04	7.21%
Lacustrine sand and gravel	659.70	17.05%
Peat and muck	66.54	1.72%
Water	190.60	4.93%
Total Watershed Area	3869.49	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

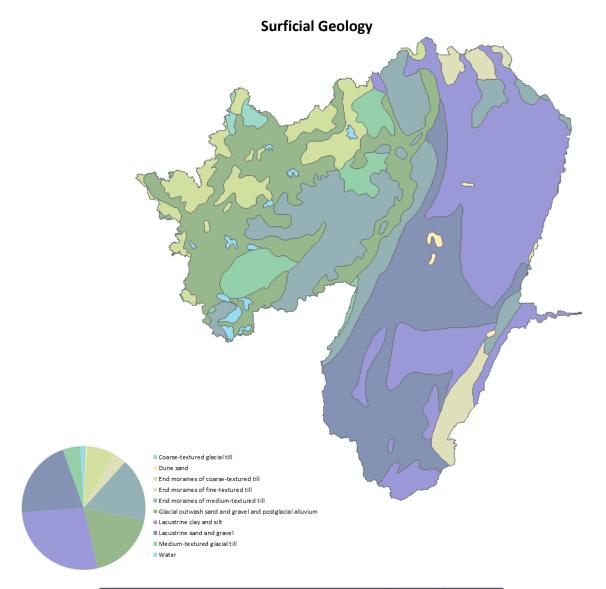


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	66.54	1.72%
Silt, Sand, and Gravel	3612.35	93.35%
Water	190.60	4.93%
Total Watershed Area	3869.49	100.00%



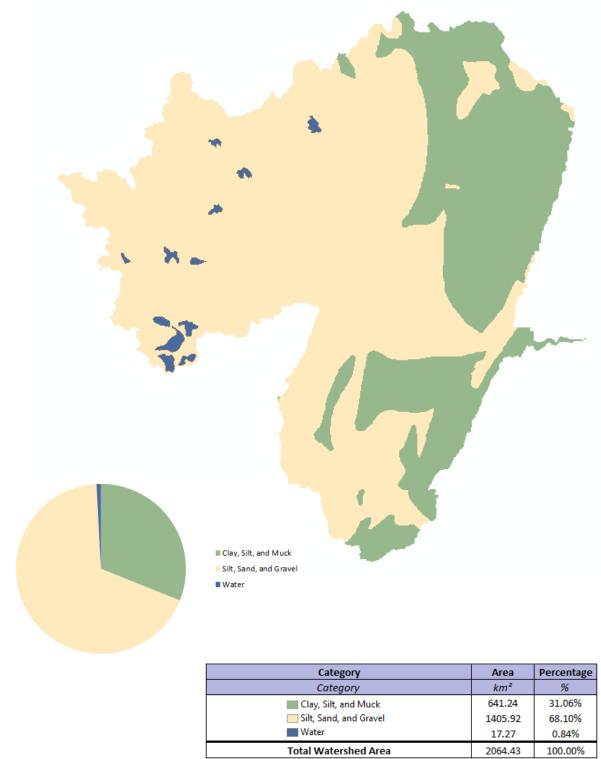
APPENDIX P. CLINTON RIVER WATERSHED (12)

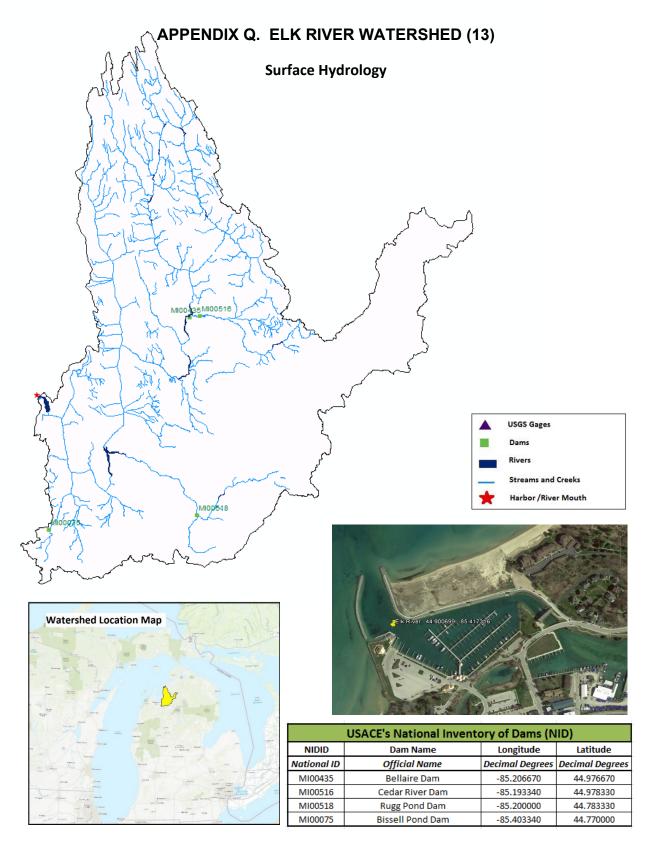
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950



All Elevation Measurements with Respect to North American Datum 1983

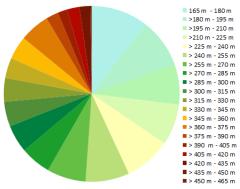
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

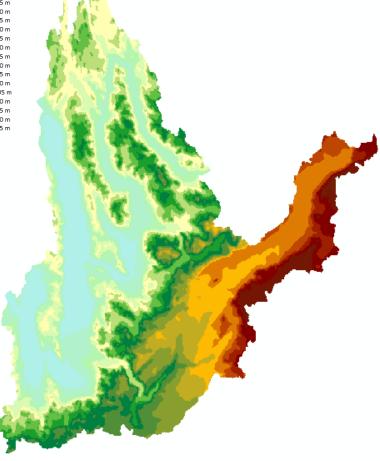

12, CLINTON RIVER WATERSHED



Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	12.27	0.59%
Dune sand	6.42	0.31%
End moraines of coarse-textured till	149.94	7.26%
End moraines of fine-textured till	72.55	3.51%
End moraines of medium-textured till	341.11	16.52%
Glacial outwash sand and gravel and postglacial alluvium	373.36	18.09%
Lacustrine clay and silt	568.69	27.55%
Lacustrine sand and gravel	427.02	20.68%
Medium-textured glacial till	95.79	4.64%
Water	17.27	0.84%
Total Watershed Area	2064.43	100.00%

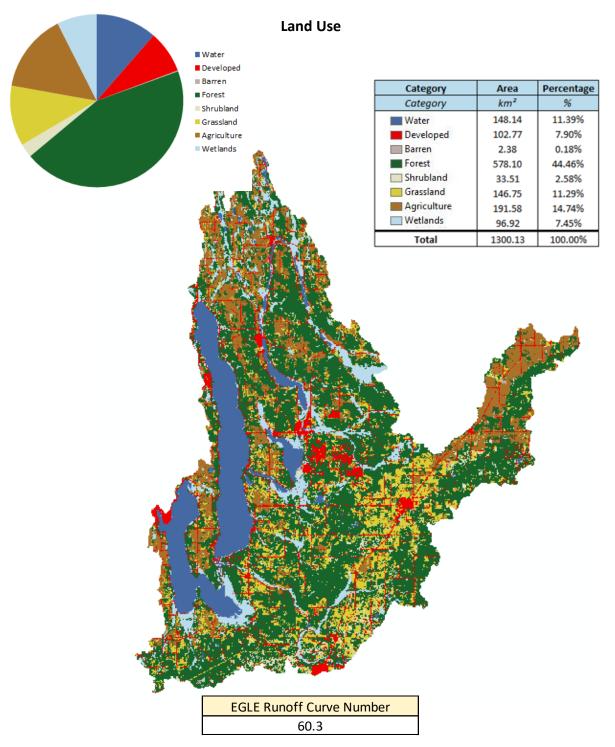
12, CLINTON RIVER WATERSHED


Surficial Geology (Simplified)



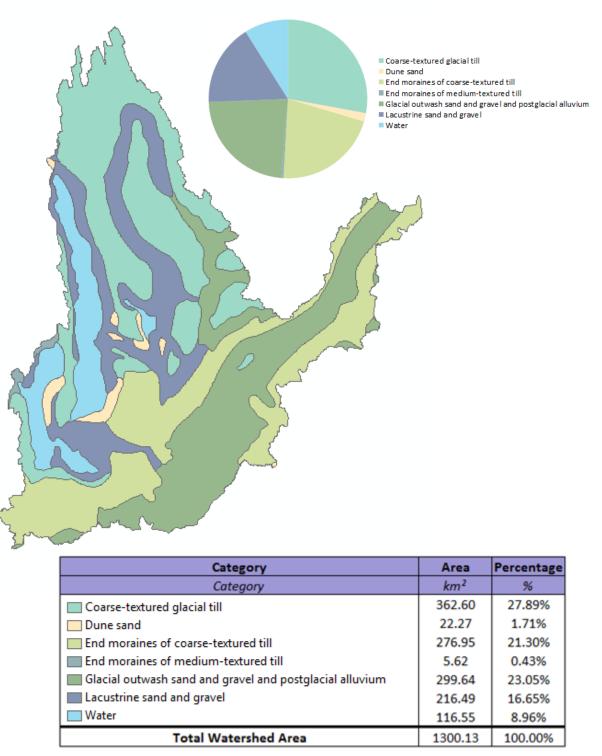
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Elevation

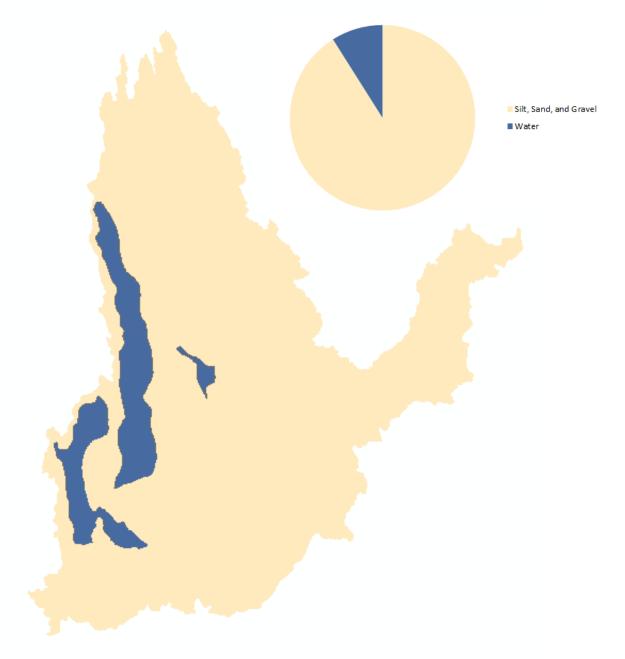


Category	Area	Percentage	
Category	km ²	%	
165 m - 180 m	136.16	10.47%	
🔜 >180 m - 195 m	118.24	9.09%	
🔲 >195 m - 210 m	96.03	7.39%	1
□ >210 m - 225 m	98.18	7.55%	
<u>>225 m - 240 m</u>	111.46	8.57%	
🔜 >240 m - 255 m	104.65	8.05%	
>255 m - 270 m	92.96	7.15%	
270 m - 285 m	73.12	5.62%	
285 m - 300 m	66.22	5.09%	
📰 >300 m - 315 m	59.36	4.57%	
> 315 m -330 m	56.44	4.34%	
📒 >330 m - 345 m	48.60	3.74%	
= > 345 m - 360 m	55.73	4.29%	
== >360 m - 375 m	71.61	5.51%	
= > 375 m - 390 m	29.73	2.29%	
== >390 m - 405 m	22.58	1.74%	
📕 >405 m - 420 m	29.80	2.29%	
📕 >420 m - 435 m	26.20	2.02%	
📕 >435 m - 450 m	3.05	0.23%	
📕 >450 m - 465 m	0.02	0.00%	
Size of Drainage Area	1300.13	100.00%	

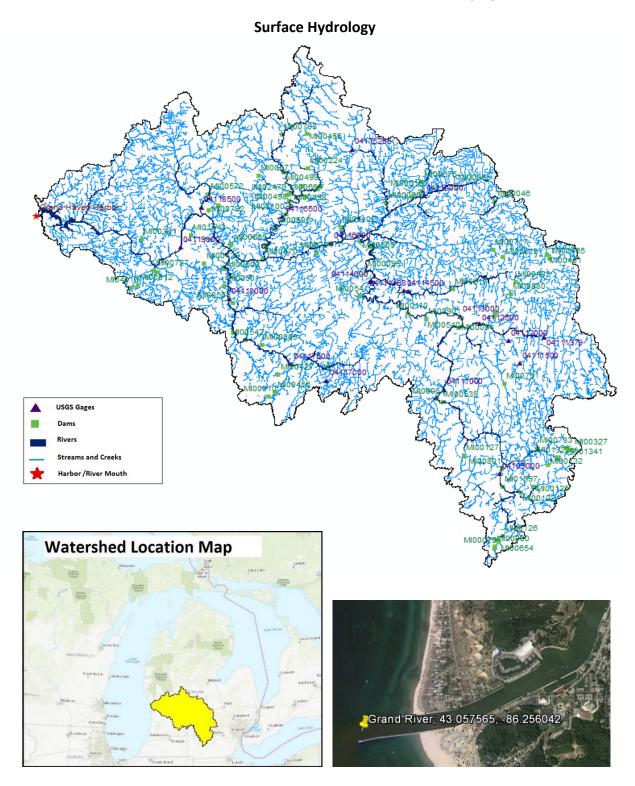
Т


Elk Watershed		
Elevation Statistics		
Size of Drainage Area	1300.13	km²
Maximum	452.00	m
Minimum	176.00	m
Average	266.29	m
Standard Deviation	70.74	m

All Elevation Measurements with Respect to North American Datum 1983

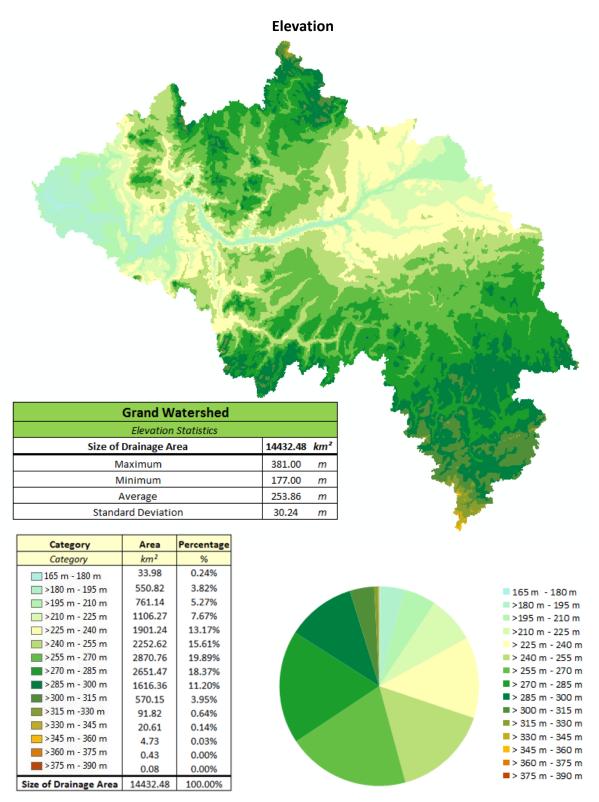


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use SystemLegend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

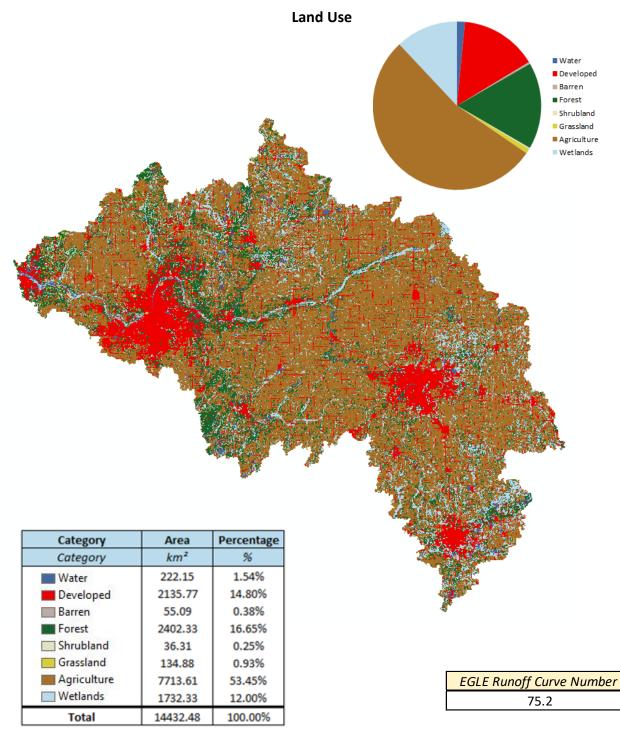

Surficial Geology

Surficial Geology (Simplified)

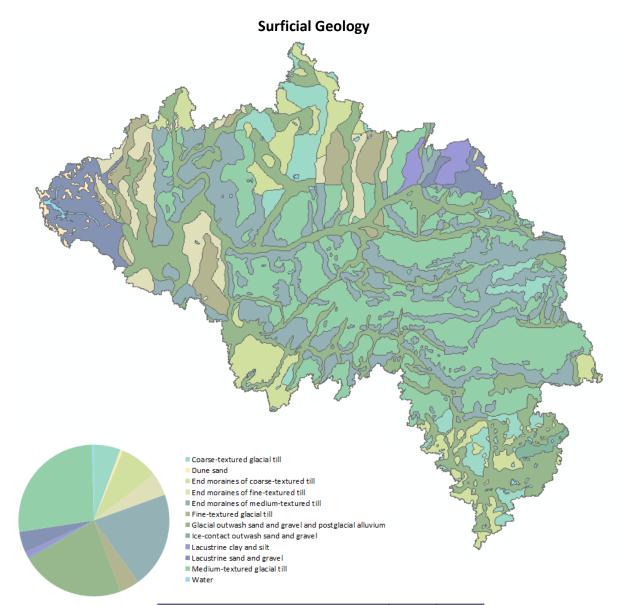
Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	1183.58	91.04%
Water	116.55	8.96%
Total Watershed Area	1300.13	100.00%

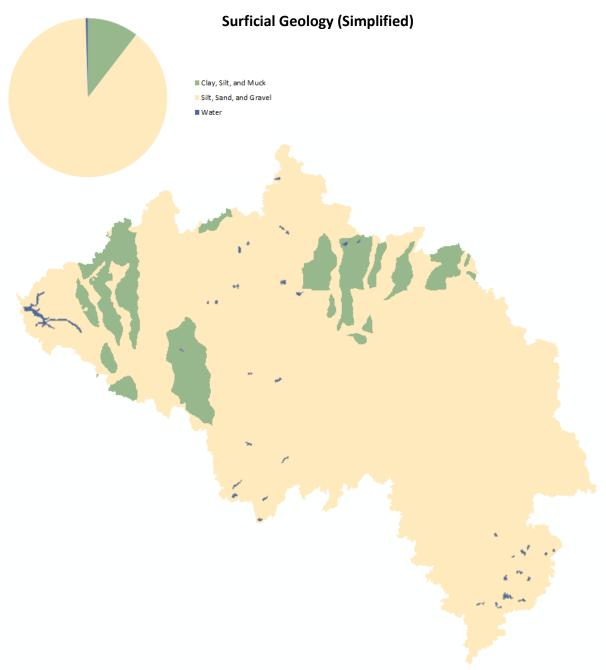

APPENDIX R. GRAND RIVER WATERSHED (14)

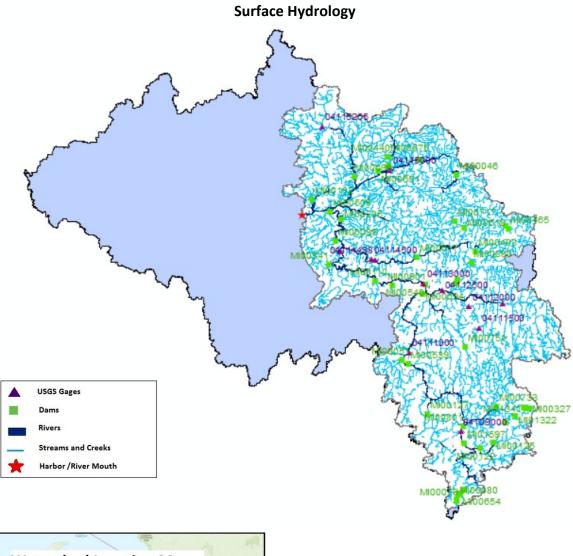
Dam Identification and USGS Streamgages


USACE's National Inventory of Dams (NID)							
NIDID	Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00206	Webber	-84.903300	42.956700	MI00427	North Branch Cedar Creek Dam	-85.286670	42.586670
MI00501	Ada	-85.500000	42.850000	MI00429	Eastbrook Lake Level Control Structure	-85.580200	42.917800
MI00502	Cascade	-85.500000	42.900000	MI00440	Little Rainbow Lake Dam	-84.696660	43.150000
MI00506	Fallasburg Dam	-85.331000	42.962000	MI00453	Grass Lake Level Control Structure	-85.521670	43.088330
MI00506	Flat River Diversion Dam	-85.335900	42.970200	MI00455	Stanton Lake Dam	-85.163060	43.298050
MI00505	White Bridge	-85.292800	43.020600	MI00456	Topski Dam	-85.300000	42.533330
MI00498	Belding	-85.234700	43.100300	MI00046	Elsie Dam	-84.405940	43.089670
MI00010	Cedar Creek Dam	-85.326670	42.521670	MI00465	Cummings Lake Dam	-84.190000	42.916670
MI00100	Smyrna Milling Company Dam	-85.250000	43.060000	MI00499	Greenville Dam	-85.258330	43.183330
MI00102	Sterner Dam	-85.028340	43.020000	MI00509	Lyons Dam	-84.953330	42.980000
MI00540	North Lansing Dam	-84.550000	42.746700	MI00541	Weippert Dam	-84.958340	42.815000
MI00094	Moores Park Dam	-84.560800	42.718400	MI00570	King Milling Company Dam	-85.346660	42.926670
MI00110	Grand Ledge Dam	-84,763340	42,763330	MI00571	Wabasis Lake Level Control Structure	-85,358330	43.175000
MI00543	Middleville	-85,465000	42.711700	MI00572	Rockford Dam	-85.561870	43,120510
MI00051	Mis	-84,655000	42.510000	MI00616	Rainbow Lake Dam	-84,698330	43.123330
MI00539	Smithville	-84.629000	42.499700	MI00617	Lake Geneva Dam	-84,583340	42.833330
MI00503	LaBarge	-85.466700	42.800000	MI00618	Lake Victoria Dam	-84.377900	42.924140
MI00542	Irving	-85.418300	42.690000	MI00651	Thunder Hole Dam	-84.742780	43.105930
MI00099	Portland	-84,930800	42.889100	MI00652	Lake Of The Hills Dam	-84.418870	42,749700
MI00012	Nashville Dam	-85.091670	42.608330	MI00654	Mirror Lake Dam	-84.418330	42.083330
MI00122	Michigan Center Dam	-84.327400	42.229000	MI00664	Ranney Lake Dam	-85.241670	43.116660
MI00125	Leoni Dam	-84.271670	42.245000	MI00665	Westdale Family Dam	-85.470000	42.970000
MI00126	Liberty Dam	-84,400000	42.100000	MI00675	Sadilek Dam	-84,700000	43.150000
MI00127	Minard Mill Dam	-84,550000	42.340000	MI00704	North Branch Rush Creek Retention Basin Dam		42.891670
MI00130	Waterloo Dam	-84.140000	42.355000	MI00717	Sleepy Hollow Dam	-84.418330	42,946670
MI00132	Portage Creek Trout Pond Dam		42.306670	MI00722	Putney Dam	-84.425000	42.088330
MI01322	Baldwin Flooding Dam	-84.176870	42.328180	MI00727	Kenowa Lake Level Control Structure	-85,783800	42.896900
MI01341	Mud Lake Dam	-84.133330	42.350000	MI00733	Portage Lake Dam	-84.256670	42.358330
MI01543	General Growth Dam	-85.633330	43.000000	MI00751	Mason Wildlife Dam	-84,383330	42.550000
MI01597	Holton Dam	-84.396670	42.245000	MI00079	Lake Le-Ann South Dam	-84,433330	42.065000
MI01957	Lake Lansing Dam	-84.410000	42.761670	MI00792	Secluded Lake Dam	-85,560000	43.075000
MI00224	County Farm Dam	-85.160000	43.195000	MI00793	Hunter Lake Level Control Structure	-85.263340	43.296670
MI02479	County Line Flooding Dam	-85.236660	43.120000	MI00794	Sessions Creek Dam	-85.127490	42.945450
MI02526	Greens Flooding Dam	-85.122500	43.133340	MI00080	Lake Le-Ann North Dam	-84.433330	42.070000
MI02527	Snaky Run Flooding Dam	-85, 181950	43.143050	MI00801	Jackson Prison Dam	-84.397780	42.297220
MI00327	Winnewana Dam	-84.116670	42.350000	MI00812	Rush Creek Detention Basin Dam #2	-85.848610	42.851940
MI00341	Root Dam	-85.831670	42,990000	MI00880	Rose Lake Flooding Dam	-84.350000	42.813890
MI00355	Milli-Ander Pond Dam	-84.562770	43.139720	MI00009	Algonguin Lake Dam	-85.350000	42.675000
MI00383	Good Point Flooding Dam	-85,110000	43.143610	MI00901	Mvers-Henderson Detention Pond	-84.690280	42.745000
MI00401	Lake Manitou Dam	-84.201670	42.928330	MI00096	Hubbardston Dam	-84,846660	43.090000
MI04010	Buttermilk Creek Detention Dam		42.845750	MI00097	Humany Dam	-85.169100	43.112800
MI00403	Scenic Lake Dam	-84.330410	42.849430	MI00098	Cannon Creek Dam	-85.228610	43.085560

USGS Stream Gage's					
STA ID	Station Name	Longitude	Latitude	Active	
4109000	GRAND RIVER AT JACKSON, MI	-84.408848	42.283647	yes	
4111000	GRAND RIVER NEAR EATON RAPIDS, MI	-84.623035	42.534759	yes	
4111379	RED CEDAR RIVER NEAR WILLIAMSTON, MI	-84.219133	42.68309	yes	
4111500	DEER CREEK NEAR DANSVILLE, MI	-84.320803	42.608369	yes	
4112000	SLOAN CREEK NEAR WILLIAMSTON, MI	-84.363861	42.675868	yes	
4112500	RED CEDAR RIVER AT EAST LANSING, MI	-84.477754	42.727813	yes	
4113000	GRAND RIVER AT LANSING, MI	-84.555257	42.75059	yes	
4114000	GRAND RIVER AT PORTLAND, MI	-84.912218	42.856423	yes	
4114498	LOOKING GLASS RIVER NEAR EAGLE, MI	-84.759434	42.82809	yes	
4114500	LOOKING GLASS RIVER AT HINMAN RD NEAR EAGLE, MI	-84.778601	42.829479		
4115000	MAPLE RIVER AT MAPLE RAPIDS, MI	-84.693052	43.109755	yes	
4115265	FISH CREEK NEAR CRYSTAL, MI	-84.981125	43.249755	yes	
4116000	GRAND RIVER AT IONIA, MI	-85.069172	42.971977	yes	
4116500	FLAT RIVER AT SMYRNA, MI	-85.264739	43.052809		
4117000	QUAKER BROOK NEAR NASHVILLE, MI	-85.093609	42.565869	yes	
4117500	THORNAPPLE RIVER NEAR HASTINGS, MI	-85.236393	42.615869	yes	
4118000	THORNAPPLE RIVER NEAR CALEDONIA, MI	-85.483352	42.811143		
4118500	ROGUE RIVER NEAR ROCKFORD, MI	-85.590865	43.082249	yes	
4119000	GRAND RIVER AT GRAND RAPIDS, MI	-85.67642	42.964471	yes	
	Number of Active USGS Stream Gage's in Drainage A	rea (2009)		16	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

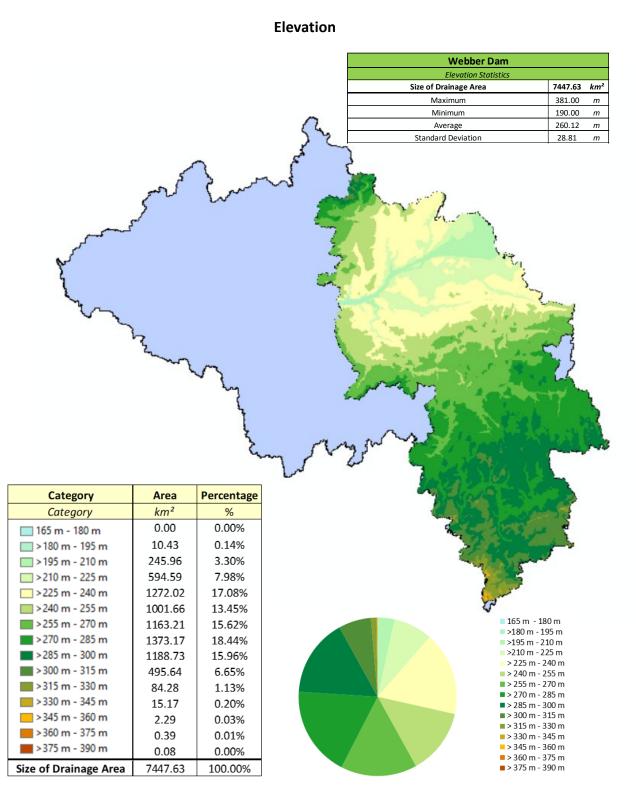

All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	825.20	5.72%
Dune sand	86.82	0.60%
End moraines of coarse-textured till	1196.20	8.29%
End moraines of fine-textured till	703.15	4.87%
End moraines of medium-textured till	2966.86	20.56%
Fine-textured glacial till	612.89	4.25%
Glacial outwash sand and gravel and postglacial alluvium	3191.81	22.12%
Ice-contact outwash sand and gravel	62.88	0.44%
Lacustrine clay and silt	188.32	1.30%
Lacustrine sand and gravel	643.47	4.46%
Medium-textured glacial till	3892.63	26.97%
Water	62.24	0.43%
Total Watershed Area	14432.48	100.00%

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	1504.37	10.42%
Silt, Sand, and Gravel	12865.87	89.15%
Water	62.24	0.43%
Total Watershed Area	14432.48	100.00%

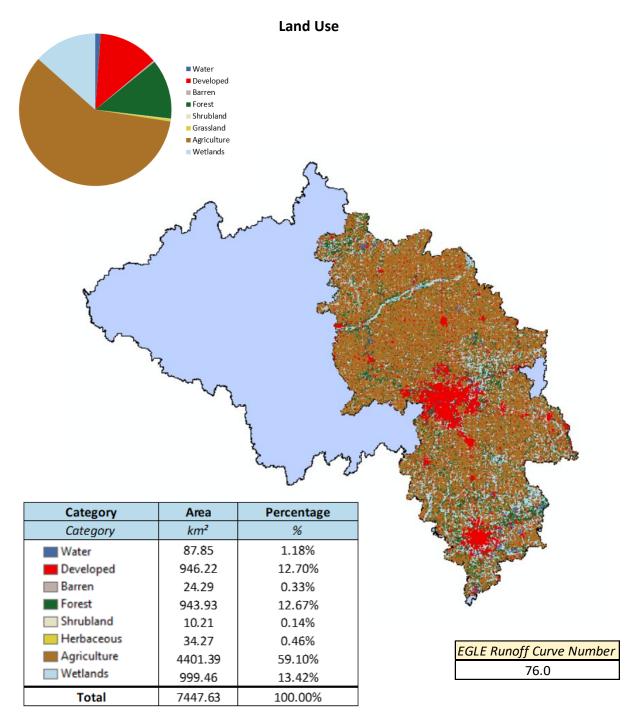
APPENDIX S. GRAND RIVER WATERSHED, WEBBER DAM (14A)

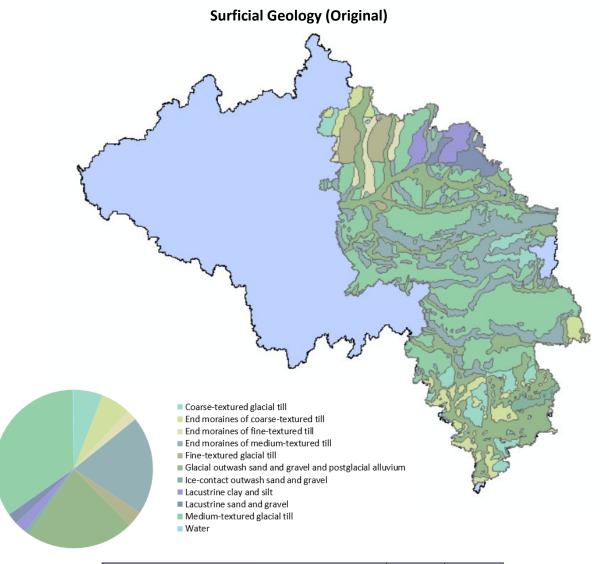

14A, GRAND RIVER WATERSHED, WEBBER DAM

Dam Identification and USGS Streamgages

USACE's National Inventory of Dams (NID)					
NIDID	Dam Name	Longitude	Latitude		
National ID	Official Name	Decimal Degrees	Decimal Degrees		
MI00102	Sterner Dam	-85.028340	43.020000		
MI00540	North Lansing Dam	-84.550000	42.746700		
MI00094	Moores Park Dam	-84.560800	42.718400		
MI00110	Grand Ledge Dam	-84.763340	42.763330		
MI00051	Mix	-84.655000	42.510000		
MI00539	Smithville	-84.629000	42.499700		
MI00099	Portland	-84.930800	42.889100		
MI00122	Michigan Center Dam	-84.327400	42.229000		
MI00125	Leoni Dam	-84.271670	42.245000		
MI00126	Liberty Dam	-84.400000	42.100000		
MI00127	Minard Mill Dam	-84.550000	42.340000		
MI00130	Waterloo Dam	-84.140000	42.355000		
MI00132	Portage Creek Trout Pond Dam	-84.216670	42.306670		
MI01322	Baldwin Flooding Dam	-84.176870	42.328180		
MI01341	Mud Lake Dam	-84.133330	42.350000		
MI01597	Holton Dam	-84.396670	42.245000		
MI01957	Lake Lansing Dam	-84.410000	42.761670		
MI00327	Winnewana Dam	-84.116670	42.350000		
MI00355	Milli-Ander Pond Dam	-84.562770	43.139720		
MI00333	Lake Manitou Dam	-84.201670	42.928330		
MI00401	Scenic Lake Dam	-84.330410	42.849430		
MI00403	Little Rainbow Lake Dam	-84.696660	43.150000		
MI000440	Elsie Dam	-84.405940	43.089670		
MI00040	Cummings Lake Dam	-84.190000	42.916670		
MI00403	Lyons Dam	-84.953330	42.980000		
MI00505	Weippert Dam	-84.958340	42.815000		
MI00541 MI00616	Rainbow Lake Dam	-84.698330	43.123330		
MI00616 MI00617	Lake Geneva Dam	-84.583340	43.123330		
MI00618	Lake Victoria Dam	-84.377900	42.924140		
MI00651	Thunder Hole Dam	-84.742780	43.105930		
MI00652	Lake Of The Hills Dam	-84.418870	42.749700		
MI00654	Mirror Lake Dam	-84.418330	42.083330		
MI00675	Sadilek Dam	-84.700000	43.150000		
MI00717	Sleepy Hollow Dam	-84.418330	42.946670		
MI00722	Putney Dam	-84.425000	42.088330		
MI00733	Portage Lake Dam	-84.256670	42.358330		
MI00751	Mason Wildlife Dam	-84.383330	42.550000		
MI00079	Lake Le-Ann South Dam	-84.433330	42.065000		
MI00080	Lake Le-Ann North Dam	-84.433330	42.070000		
MI00801	Jackson Prison Dam	-84.397780	42.297220		
MI00880	Rose Lake Flooding Dam	-84.350000	42.813890		
MI00901	Myers-Henderson Detention Pond	-84.690280	42.745000		
MI00096	Hubbardston Dam	-84.846660	43.090000		

USGS Stream Gage's						
STA ID	Station Name	Longitude	Latitude	Active		
4109000	GRAND RIVER AT JACKSON, MI	-84.408848	42.283647	yes		
4111000	GRAND RIVER NEAR EATON RAPIDS, MI	-84.623035	42.534759	yes		
4111379	RED CEDAR RIVER NEAR WILLIAMSTON, MI	-84.219133	42.68309	yes		
4111500	DEER CREEK NEAR DANSVILLE, MI	-84.320803	42.608369	yes		
4112000	SLOAN CREEK NEAR WILLIAMSTON, MI	-84.363861	42.675868	yes		
4112500	RED CEDAR RIVER AT EAST LANSING, MI	-84.477754	42.727813	yes		
4113000	GRAND RIVER AT LANSING, MI	-84.555257	42.75059	yes		
4114000	GRAND RIVER AT PORTLAND, MI	-84.912218	42.856423	yes		
4114498	LOOKING GLASS RIVER NEAR EAGLE, MI	-84.759434	42.82809	yes		
4114500	LOOKING GLASS RIVER AT HINMAN RD NEAR EAGLE, MI	-84.778601	42.829479			
4115000	MAPLE RIVER AT MAPLE RAPIDS, MI	-84.693052	43.109755	yes		
4115265	FISH CREEK NEAR CRYSTAL, MI	-84.981125	43.249755	yes		
Number of Active USGS Stream Gage's in Drainage Area (2009)				11		


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

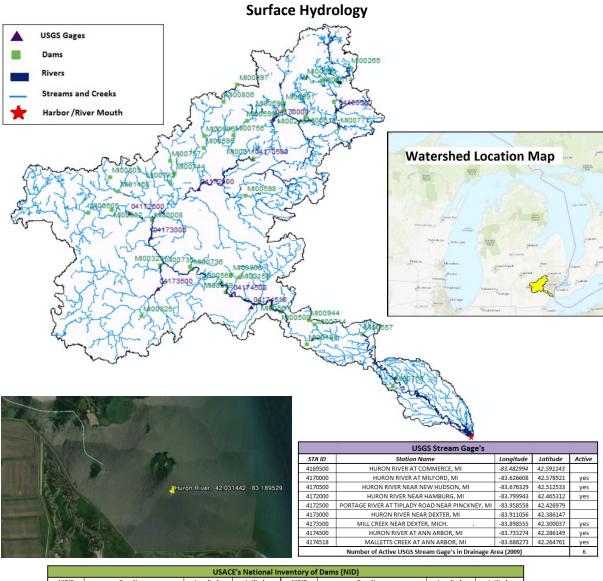

14A, GRAND RIVER WATERSHED, WEBBER DAM

All Elevation Measurements with Respect to North American Datum 1983

14A, GRAND RIVER WATERSHED, WEBBER DAM (14A)

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

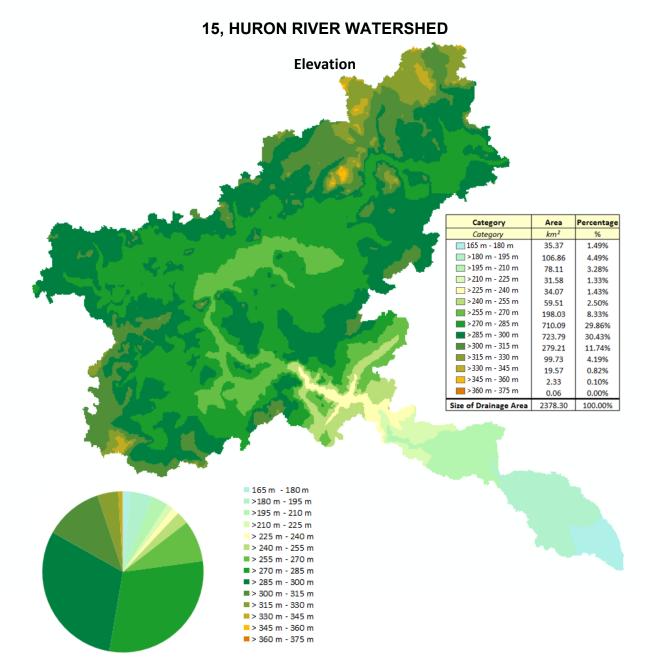
14A, GRAND RIVER WATERSHED, WEBBER DAM


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	440.50	5.91%
End moraines of coarse-textured till	449.44	6.03%
End moraines of fine-textured till	168.90	2.27%
End moraines of medium-textured till	1494.64	20.07%
Fine-textured glacial till	244.19	3.28%
Glacial outwash sand and gravel and postglacial alluvium	1641.44	22.04%
Ice-contact outwash sand and gravel	63.90	0.86%
Lacustrine clay and silt	189.86	2.55%
Lacustrine sand and gravel	167.21	2.25%
Medium-textured glacial till	2571.12	34.52%
Water	16.44	0.22%
Total Watershed Area	7447.63	100.00%

Surficial Geology (Simplified) ■ Clay, Silt, and Muck Silt, Sand, and Gravel ■ Water

Category	Area	Percentage
	km²	%
Clay, Silt, and Muck	602.95	8.10%
Silt, Sand, and Gravel	6828.24	91.68%
Water	16.44	0.22%
Total Watershed Area	7447.63	100.00%

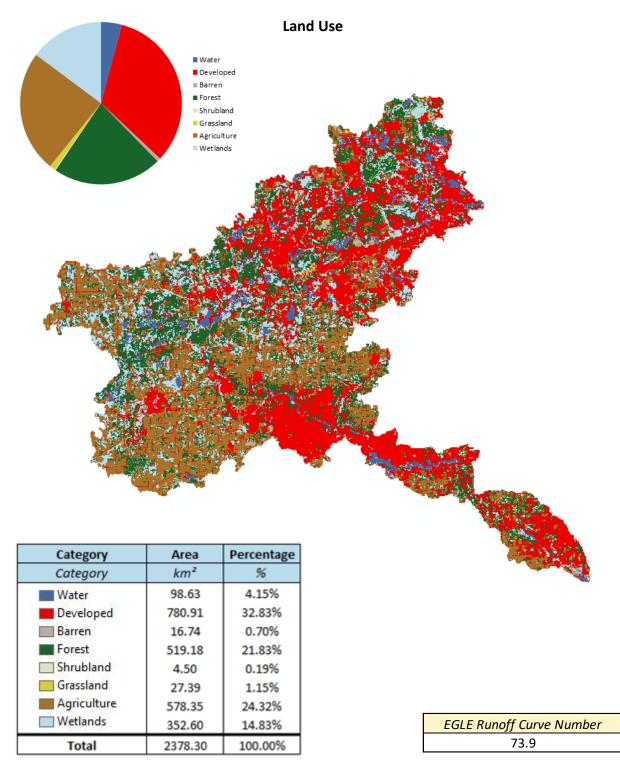
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources


14A, GRAND RIVER WATERSHED, WEBBER DAM

APPENDIX T. HURON RIVER WATERSHED (15)

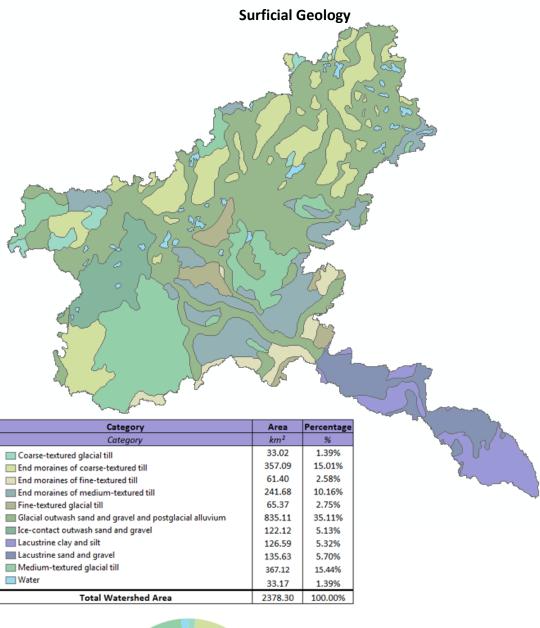
USACE's National Inventory of Dams (NID)							
NIDID	Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00560	Barton Dam	-83.754300	42.308300	MI00602	HiLand Lake Dam	-83.997530	42.433650
MI00558	Superior Dam	-83.644200	42.265500	MI00605	Unadilla Mill Dam	-84.051670	42.430000
MI00194	Ford Lake	-83.566700	42.200000	MI00606	Woodland Lake Dam	-83.785000	42.553330
MI00557	French Landing	-83.440800	42.214400	MI00614	Lake Neva Dam	-83.515000	42.641670
MI00011	Kent Lake Dam	-83.675000	42.513330	MI00615	Lake Sherwood Dam	-83.555000	42.581670
MI01468	Marsh Unit Flooding #4	-83.981670	42.465000	MI00690	Pettibone Creek Dam No 2	-83.601670	42.593330
MI02001	Fox Lake Dam	-83.488330	42.605000	MI00691	Moore Lake Dam	-83.602640	42.603180
MI02158	Traver Lake Dam #5	-83.715000	42.315000	MI00696	Haven Hill Lake Dam	-83.551670	42.645000
MI00248	Ford Dam #3 (Hubbell Pond)	-83.616670	42.585000	MI00714	Tyler Dam	-83.546670	42.233330
MI00263	Oxbow Dam	-83.481670	42.640000	MI00735	Bridgeway Lake Dam	-83.825000	42.335000
MI00265	Pontiac Lake Dam	-83.451670	42.661670	MI00736	Green Oak Lake Dam	-83.820000	42.331670
MI00308	Traver Creek Retention Dam	-83.731670	42.320000	MI00743	Pettysville Mill Dam	-83.865000	42.478330
MI00324	Dexter Dam	-83.891670	42.338890	MI00744	Caroga Lake Level Control Structure	-83.855000	42.491660
MI00325	Sutton Lake Dam	-83.936670	42.255000	MI00756	Moraine Lake Dam	-83.718330	42.553330
MI00500	Peninsular Paper Dam	-83.624090	42.256180	MI00757	Lower Chilson Pond Dam	-83.863330	42.513330
MI00559	Argo Dam	-83.745500	42.290590	MI00760	Washago Pond Dam	-83.375000	42.126670
MI00561	Geddes Dam	-83.671300	42.271000	MI00777	Wolverine Lake Dam	-83.480000	42.561940
MI00595	Brighton Lake Dam	-83.786670	42.533330	MI00008	Flook Dam	-83.906750	42.414570
MI00597	Bullard Lake Dam	-83.706670	42.638330	MI00803	Gregory State Game Area #2 Dam	-84.000000	42.488330
MI00598	Inchwagh Lake Dam	-83.695000	42.451670	MI00806	Long Lake Control Stucture	-83.739170	42.610550
MI00599	General Motors Dam	-83.686670	42.576670	MI00944	Willow Run Hydro Dam	-83.559680	42.240800

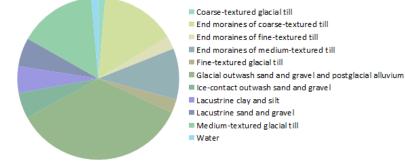
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

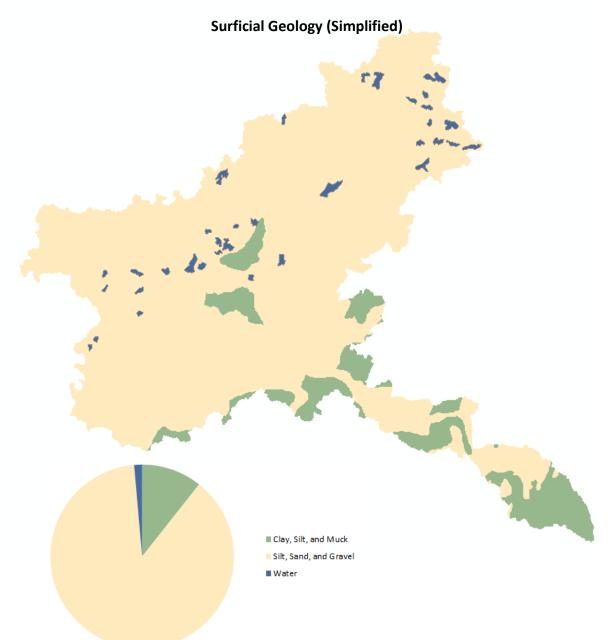


Huron River Watershed		
Elevation Statistics		
Size of Drainage Area	2378.30	km²
Maximum	363.00	m
Minimum	174.00	m
Average	275.46	m
Standard Deviation	33.02	m

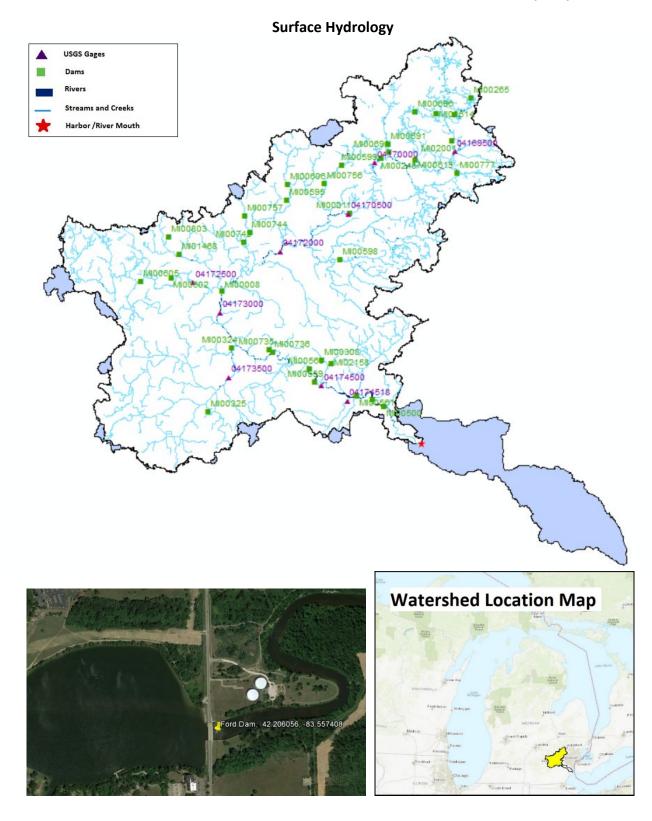
All Elevation Measurements with Respect to North American Datum 1983


268


15, HURON RIVER WATERSHED

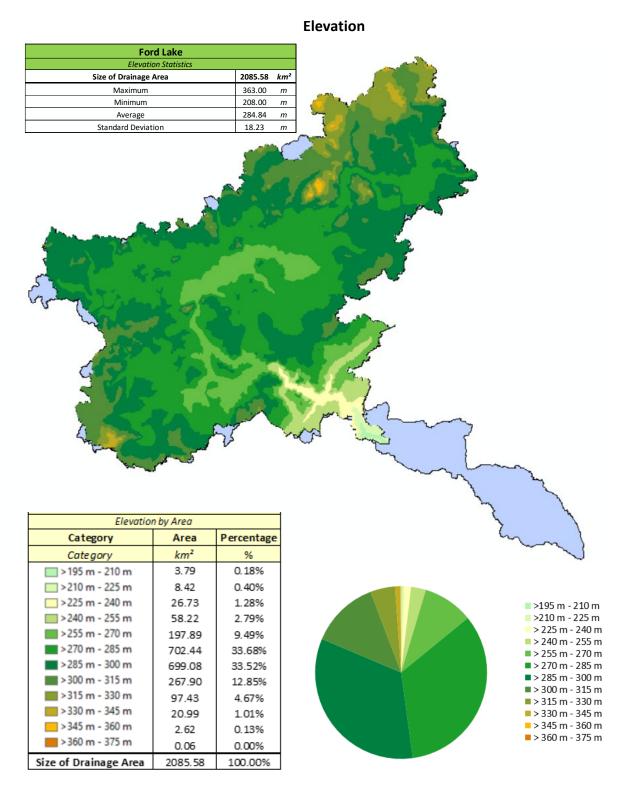

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

15, HURON RIVER WATERSHED

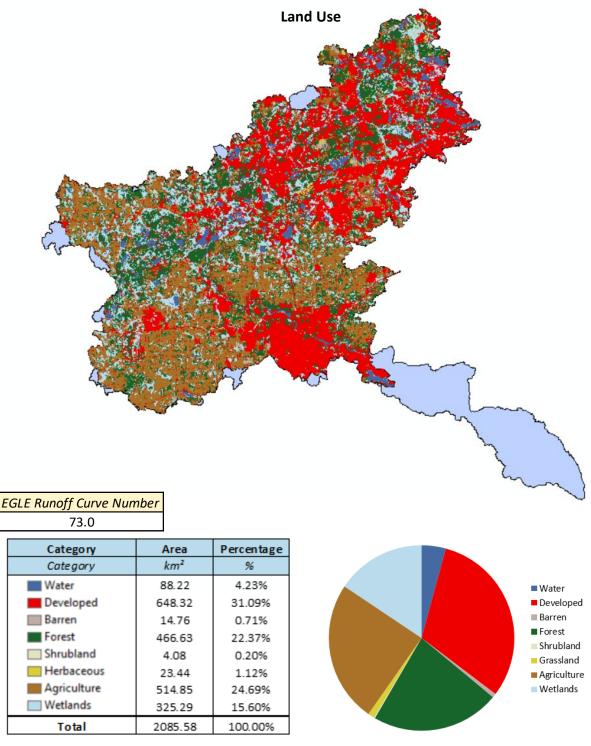


15, HURON RIVER WATERSHED

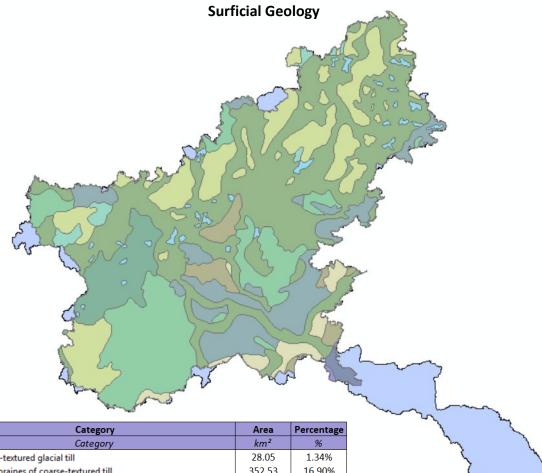
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	253.36	10.65%
Silt, Sand, and Gravel	2091.77	87.95%
Water	33.17	1.39%
Total Watershed Area	2378.30	100.00%

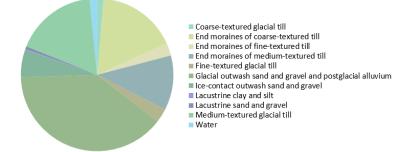

APPENDIX U. HURON RIVER WATERSHED, FORD LAKE (15A)

Dam Information and USGS Streamgages


	USACE's National Inventory of Dam	is (NID)	
NIDID	Dam Name	Longitu de	Latitude
Natio nal ID	Official Name	Decima I Degrees	De cim al Deg rees
MI00560	Barton Dam	-83.754300	42.308300
MI00558	Superior Dam	-83.644200	42.265500
MI00011	Kent Lake Dam	-83.675000	42.513330
MI01468	Marsh Unit Flooding #4	-83.981670	42.465000
MI02001	Fox Lake Dam	-83.488330	42.605000
MI02158	Traver Lake Dam #5	-83.715000	42.315000
MI00248	Ford Dam #3 (Hubbell Pond)	-83.616670	42.585000
MI00263	Oxbow Dam	-83.481670	42.640000
MI00265	Pontiac Lake Dam	-83.451670	42.661670
MI00308	Traver Creek Retention Dam	-83.731670	42.320000
MI00324	Dexter Dam	-83.891670	42.338890
MI00325	Sutton Lake Dam	-83.936670	42.255000
MI00500	Peninsular Paper Dam	-83.624090	42.256180
MI00559	Argo Dam	-83.745500	42.290590
MI00561	Geddes Dam	-83.671300	42.271000
MI00595	Brighton Lake Dam	-83.786670	42.533330
MI00598	Inchwagh Lake Dam	-83.695000	42.451670
MI00599	General Motors Dam	-83.686670	42.576670
MI00602	HiLand Lake Dam	-83.997530	42.433650
MI00605	Unadilla Mill Dam	-84.051670	42.430000
MI00606	Woodland Lake Dam	-83.785000	42.553330
MI00614	Lake Neva Dam	-83.515000	42.641670
MI00615	Lake Sherwood Dam	-83.555000	42.581670
MI00690	Pettibone Creek Dam No 2	-83.601670	42.593330
MI00691	Moore Lake Dam	-83.602640	42.603180
MI00696	Haven Hill Lake Dam	-83.551670	42.645000
MI00735	Bridgeway Lake Dam	-83.825000	42.335000
MI00736	Green Oak Lake Dam	-83.820000	42.331670
MI00743	Pet tysville Mill Dam	-83.865000	42.478330
MI00744	Caroga Lake Level Control Structure	-83.855000	42.491660
MI00756	Moraine Lake Dam	-83.718330	42.553330
MI00757	Lower Chilson Pond Dam	-83.863330	42.513330
MI00777	Wolverine Lake Dam	-83.480000	42.561940
MI00008	Flook Dam	-83.906750	42.414570
MI00803	Gregory State Game Area #2 Dam	-84.000000	42.488330

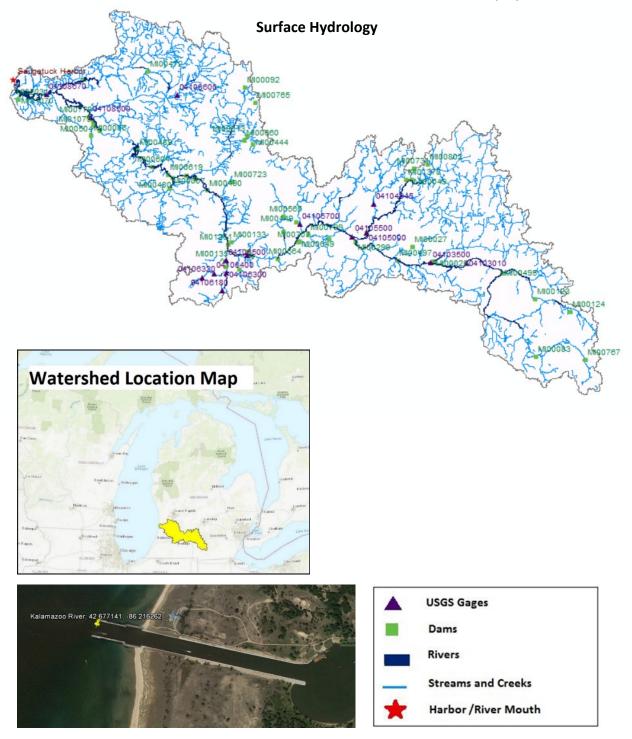
	USGS Stream Gage's			
STA ID	Station Name	Longitude	Latitude	Active
4169500	HURON RIVER AT COMMERCE, MI	-83.482994	42.591143	
4170000	HURON RIVER AT MILFORD, MI	-83.626608	42.578921	yes
4170500	HURON RIVER NEAR NEW HUDSON, MI	-83.676329	42.512533	yes
4172000	HURON RIVER NEAR HAMBURG, MI	-83.799943	42.465312	yes
4172500	PORTAGE RIVER AT TIPLADY ROAD NEAR PINCKNEY, MI	-83.958558	42.426979	
4173000	HURON RIVER NEAR DEXTER, MI	-83.911056	42.386147	
4173500	MILL CREEK NEAR DEXTER, MICH.	-83.898555	42.300037	yes
4174500	HURON RIVER AT AN N ARBOR, MI	-83.733274	42.286149	yes
4174518	MALLETTS CREEK AT ANN ARBOR, MI	-83.688273	42.264761	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			6	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


All Elevation Measurements with Respect to North American Datum 1983



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

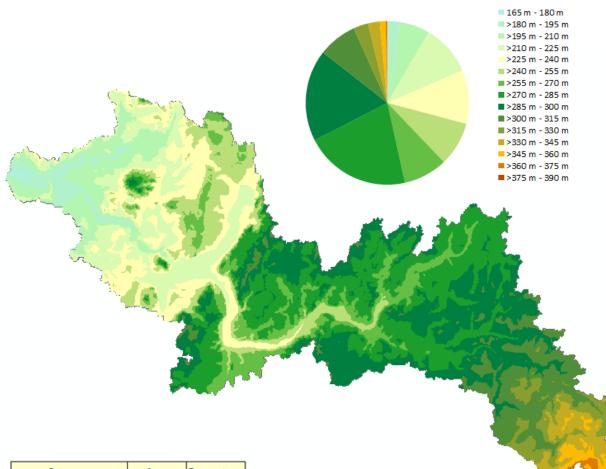


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	28.05	1.34%
End moraines of coarse-textured till	352.53	16.90%
End moraines of fine-textured till	55.82	2.68%
End moraines of medium-textured till	241.29	11.57%
Fine-textured glacial till	62.68	3.01%
Glacial outwash sand and gravel and postglacial alluvium	812.88	38.98%
Ice-contact outwash sand and gravel	122.22	5.86%
Lacustrine clay and silt	2.30	0.11%
Lacustrine sand and gravel	13.29	0.64%
Medium-textured glacial till	361.57	17.34%
Water	32.96	1.58%
Total Watershed Area	2085.58	100.00%

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	120.80	5.79%
Silt, Sand, and Gravel	1931.82	92.63%
Water	32.96	1.58%
Total Watershed Area	2085.58	100.00%

APPENDIX V. KALAMAZOO RIVER WATERSHED (17)

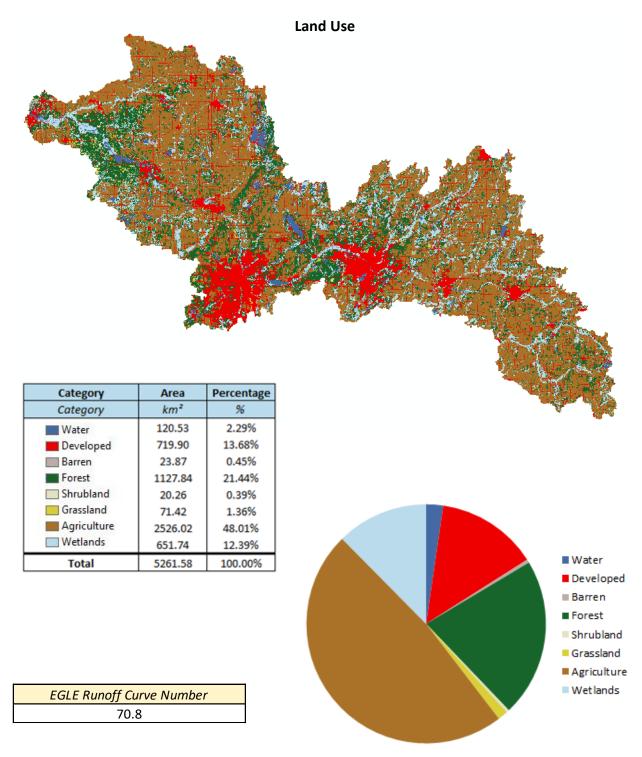
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Dam Identification and USGS Streamgages

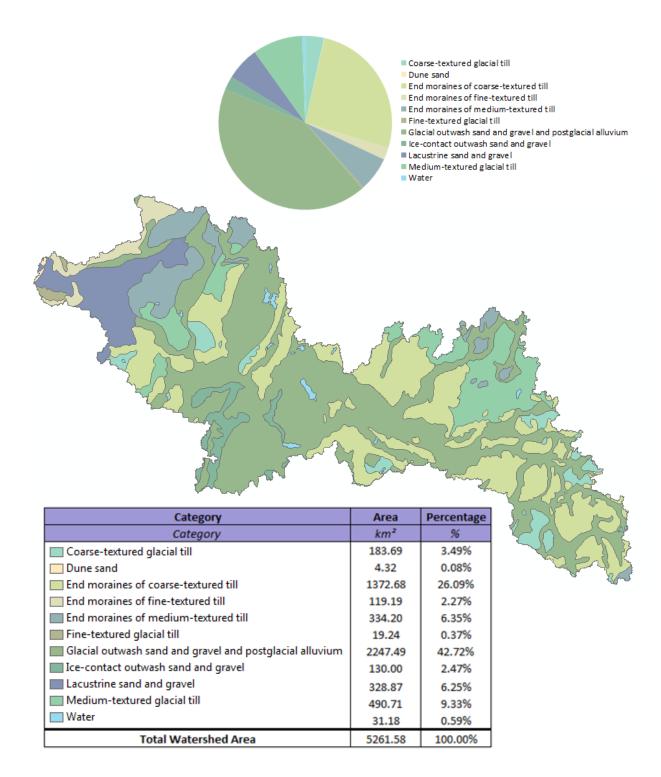
	USACE's National Inventory of Dams (NID)						
MI00151	Allegan	-85.95330	42.56340	MI00480	Pine Creek Dam	-85.73500	42.45667
MI00027	Redmon (Marshall) Perrin 1	-85.01670	42.30000	MI00490	Plainwell Dam Number 2	-85.63167	42.43000
MI00027	Perrin Dam No 2	-85.01670	42.30000	MI00491	Plainwell Dam #1	-85.66760	42.45590
MI00146	Morrow	-85.50000	42.28330	MI00495	Albion Dam	-84.74667	42.23833
MI00049	Bellevue Mill Dam	-85.01670	42.45000	MI00496	Hamilton Dam	-86.00333	42.67667
MI01070	Silver Valley Ponds Dam	-86.20000	42.63334	MI00497	Ceresco Dam	-85.06000	42.27000
MI01073	Highbanks Dam	-85.97285	42.57722	MI00504	Cross Dike Dam	-85.97230	42.58210
MI01144	Verona Dam	-85.15334	42.33167	MI00522	Menasha Dam	-85.69240	42.46320
MI00489	Allegan City Dam	-85.84000	42.52000	MI00564	Upjohn Dam	-85.42000	42.27500
MI00123	Concord Dam	-84.65000	42.17833	MI00565	Gull Lake Dam	-85.40350	42.36966
MI00124	Horton Dam	-84.54500	42.15000	MI00006	Swan Creek Dam	-85.98000	42.55167
MI01251	Williams Pond Dam	-85.57000	42.30833	MI00604	Trowbridge Dam	-85.79660	42.48290
MI00013	Orangeville Dam	-85.50833	42.55000	MI00619	Otsego Dam	-85.74960	42.46500
MI00133	Spring Valley Park Dam	-85.56052	42.31318	MI00649	Jackson Hole Dam	-85.35540	42.31500
MI00135	Bryant Mill Dam	-85.57833	42.27000	MI00660	Canterbury Lake Dam	-85.52000	42.54000
MI00136	Lower Comstock Dam	-85.51000	42.28833	MI00666	Vanrick Industrial Park Dam	-85.53500	42.25333
MI00137	Middle Comstock Dam	-85.51000	42.29167	MI00007	Williams Mill Dam	-85.74333	42.43333
MI01370	Cheney Lake Dam	-85.03333	42.45000	MI00707	Whitford Lake Dam	-85.36010	42.31220
MI00141	Howlandsburg Dam	-85.40226	42.33587	MI00723	Lake Doster Dam	-85.55666	42.44833
MI00145	Monarch Paper Mill Dam	-85.57667	42.25834	MI00731	Giesler Dam	-85.00833	42.47500
MI00149	Brook Lodge Dam	-85.36500	42.35667	MI00765	Hall Lake Dam	-85.48500	42.62500
MI02031	Van Dragt s Dam	-86.20000	42.63334	MI00767	Fowle Mill Dam	-84.50166	42.04167
MI00025	Rice Creek Dam	-84.95333	42.26667	MI00779	Palmer Bayou Dam	-85.98720	42.59330
MI02583	Engineer Lake Dam	-85.26527	42.31944	MI00799	Eagle Lake Dam	-85.32880	42.32810
MI00299	Monroe Street Dam	-85.18667	42.31167	MI00802	Gregory State Game Area Dam #3	-84.96697	42.48320
MI00444	Lower Crystal Lake Dam	-85.49167	42.53167	MI00083	Big Mosherville Dam	-84.65000	42.05000
MI00472	Monterey Lake Dam	-85.80833	42.69500	MI00092	Bowen Mill Dam	-85.51667	42.65833

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4103010	KALAMAZOO RIVER NEAR MARENGO, MI	-84.855812	42.261708	yes
4103500	KALAMAZOO RIVER AT MARSHALL, MI	-84.96387	42.264764	yes
4104945	WANADOGA CREEK NEAR BATTLE CREEK, MI	-85.13166	42.396428	yes
4105000	BATTLE CREEK AT BATTLE CREEK, MI	-85.154158	42.331985	yes
4105500	KALAMAZOO RIVER NEAR BATTLE CREEK, MI	-85.197493	42.32393	yes
4105700	AUGUSTA CREEK NEAR AUGUSTA, MI	-85.353889	42.353373	yes
4106000	KALAMAZOO RIVER AT COMSTOCK, MI	-85.513893	42.285597	yes
4106180	PORTAGE CREEK AT PORTAGE, MI	-85.589725	42.205876	
4106300	PORTAGE CREEK NEAR KALAMAZOO, MI	-85.575837	42.246153	yes
4106320	WEST FORK PORTAGE CREEK NEAR OSHTEMO, MI	-85.648339	42.235318	yes
4106400	WEST FORK PORTAGE CREEK AT KALAMAZOO, MI	-85.613894	42.244485	yes
4106500	PORTAGE CREEK AT KALAMAZOO, MI	-85.576394	42.274208	
4108500	KALAMAZOO RIVER NEAR FENNVILLE, MI	-85.984199	42.593363	
4108600	RABBIT RIVER NEAR HOPKINS, MI	-85.721968	42.642254	yes
4108670	KALAMAZOO RIVER NEAR NEW RICHMOND, MI	-86.116147	42.644749	yes
	Number of Active USGS Stream Gage's in Drainag	e Area (2009)		12

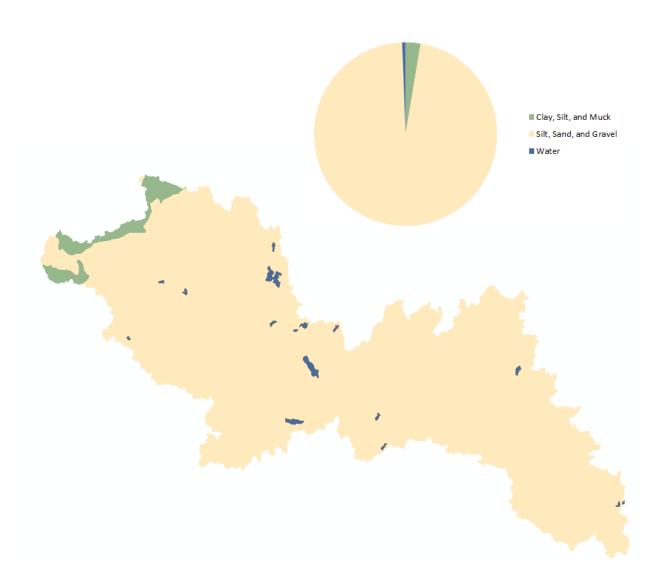
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Elevation

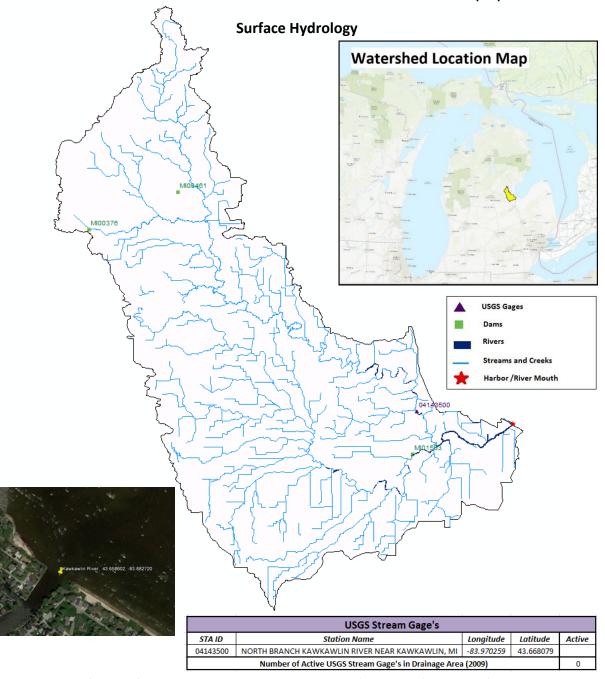
Category	Area	Percentage
Category	km ²	%
165 m - 180 m	5.00	0.09%
 >180 m - 195 m	128.01	2.43%
🔲 >195 m - 210 m	309.56	5.88%
📃 >210 m - 225 m	531.13	10.09%
<u>>225 m - 240 m</u>	558.91	10.62%
📃 >240 m - 255 m	458.55	8.72%
>255 m - 270 m	457.61	8.70%
📕 >270 m - 285 m	1099.94	20.91%
== >285 m - 300 m	953.41	18.12%
>300 m - 315 m	403.45	7.67%
>315 m -330 m	154.71	2.94%
📒 >330 m - 345 m	122.32	2.32%
<u>>345 m - 360 m</u>	62.03	1.18%
>360 m - 375 m	16.90	0.32%
📕 > 375 m - 390 m	0.06	0.00%
Size of Drainage Area	5261.58	100.00%


Kalamazoo River Watershed				
Elevation Statistics				
Size of Drainage Area	5261.58	km²		
Maximum	381.00	m		
Minimum	179.00	m		
Average	263.68	m		
Standard Deviation	37.12	m		

All Elevation Measurements with Respect to North American Datum 1983



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


Surficial Geology

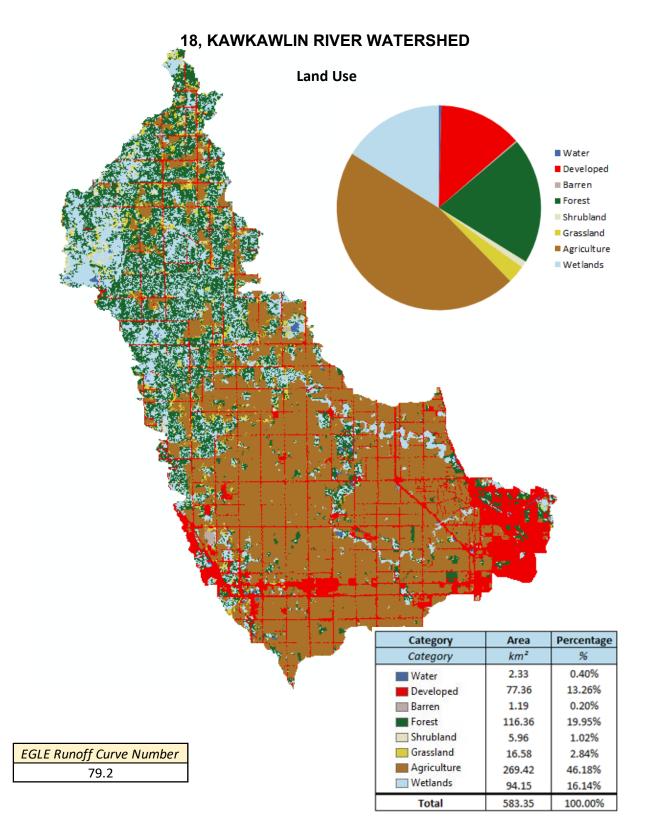
Surficial Geology (Simplified)



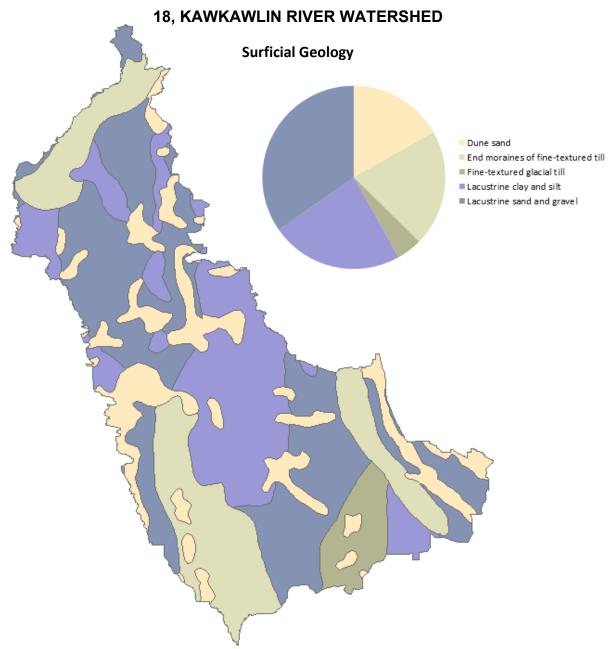
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	138.43	2.63%
Silt, Sand, and Gravel	5091.96	96.78%
Water	31.18	0.59%
Total Watershed Area	5261.58	100.00%

USACE's National Inventory of Dams (NID)				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI01593	Kawkawlin River Walleye Pond Dam	-83.975000	43.640000	
MI00376	Kawkawlin Flooding Dam	-84.265000	43.793330	
MI00461	Robert Dulude Dam	-84.183330	43.816670	

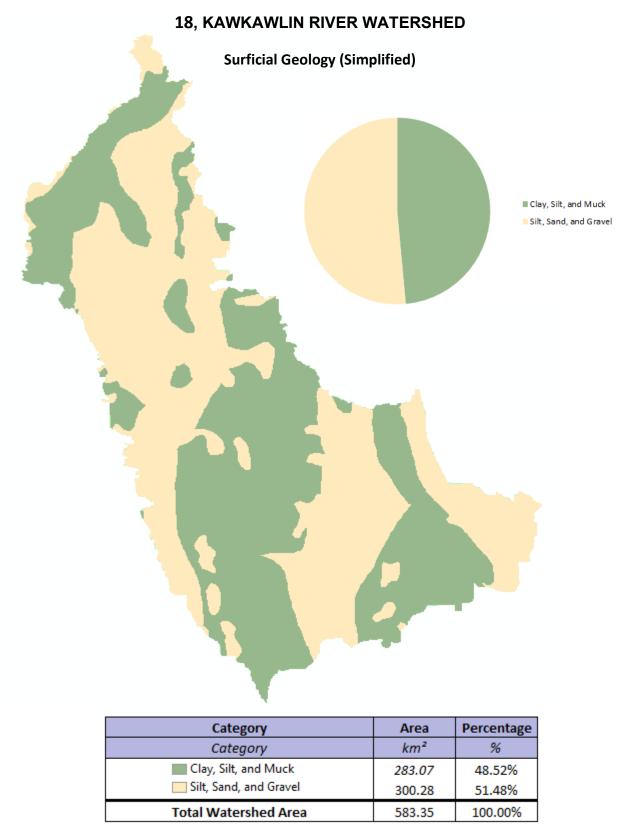
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

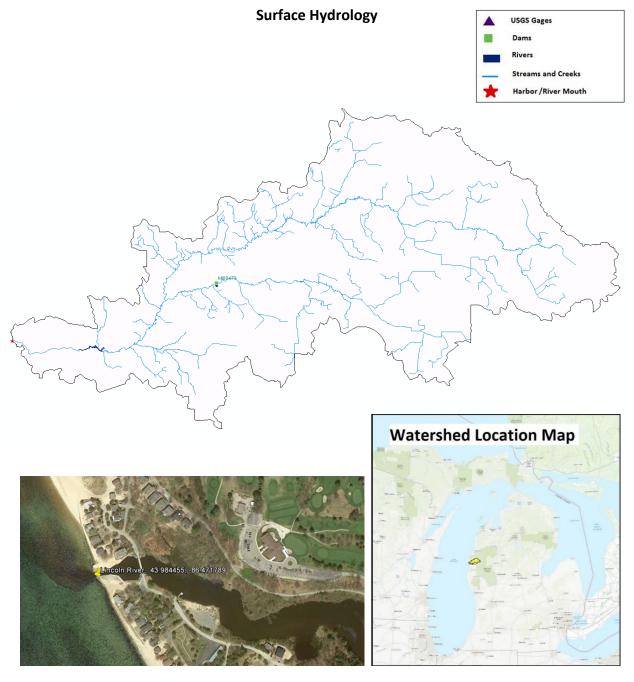

Category	Area	Percentage	
Category	km²	%	
🔲 165 m - 180 m	24.79	4.25%	
🔜 >180 m - 195 m	218.15	37.40%	
🔜 >195 m - 210 m	218.68	37.49%	
🔜 >210 m - 225 m	104.82	17.97%	
─ >225 m - 240 m	16.91	2.90%	
Size of Drainage Area	583.35	100.00%	

Kawkawlin Watershed					
Elevation Statistics					
Size of Drainage Area 583.35					
Maximum	237.00	т			
Minimum	177.00	т			
Average	198.56	т			
Standard Deviation	12.83	m			


All Elevation Measurements with Respect to North American Datum 1983

18, KAWKAWLIN RIVER WATERSHED

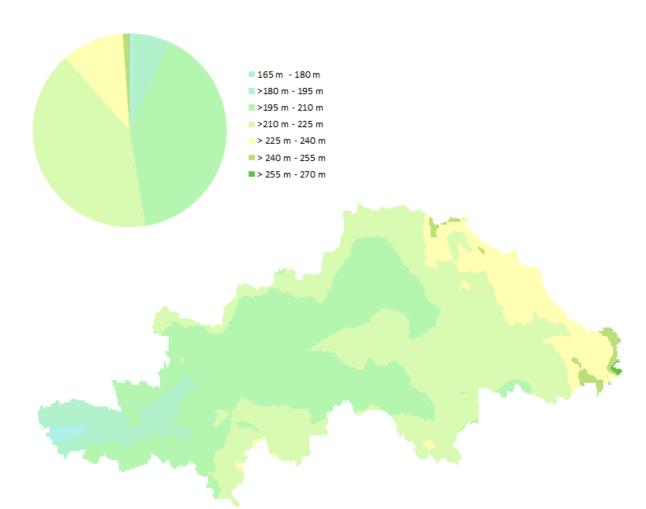

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend



Category	Area	Percentage
Category	km²	%
Dune sand	97.87	16.78%
End moraines of fine-textured till	120.06	20.58%
Fine-textured glacial till	26.45	4.53%
Lacustrine clay and silt	136.56	23.41%
Lacustrine sand and gravel	202.41	34.70%
Total Watershed Area	583.35	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

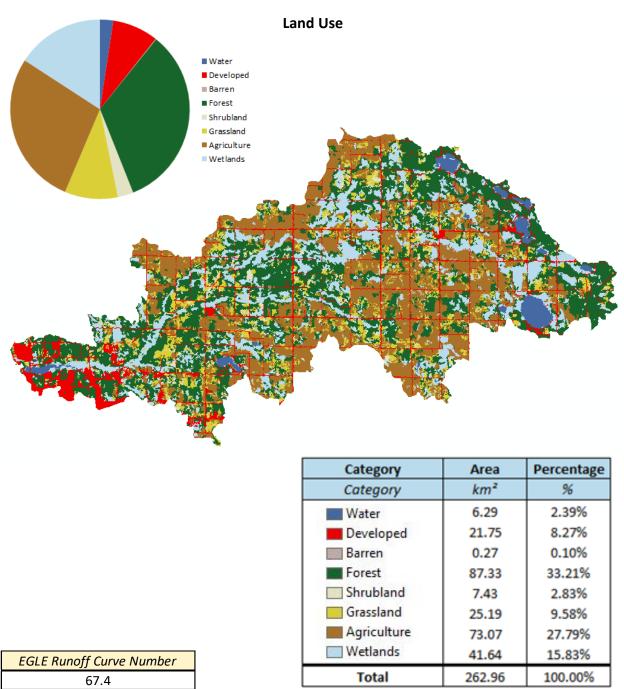
287



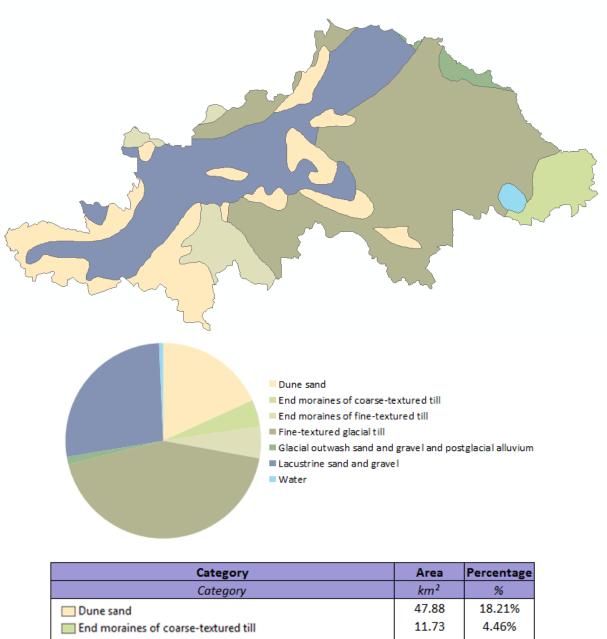
APPENDIX X. LINCOLN RIVER WATERSHED (19)

USACE's National Inventory of Dams (NID)						
NIDID	NIDID Dam Name Longitude Latitude					
National ID	Official Name	Decimal Degrees	Decimal Degrees			
MI00473	West Shore Community College Dam	-86.333340	44.013330			

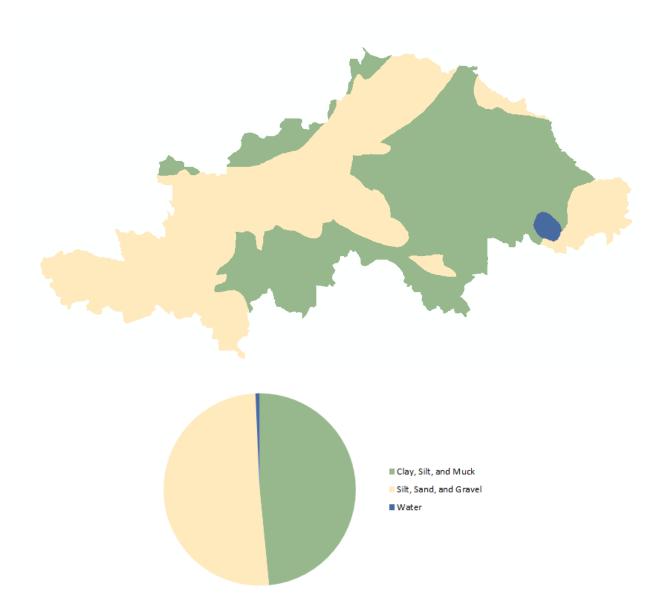
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Elevation

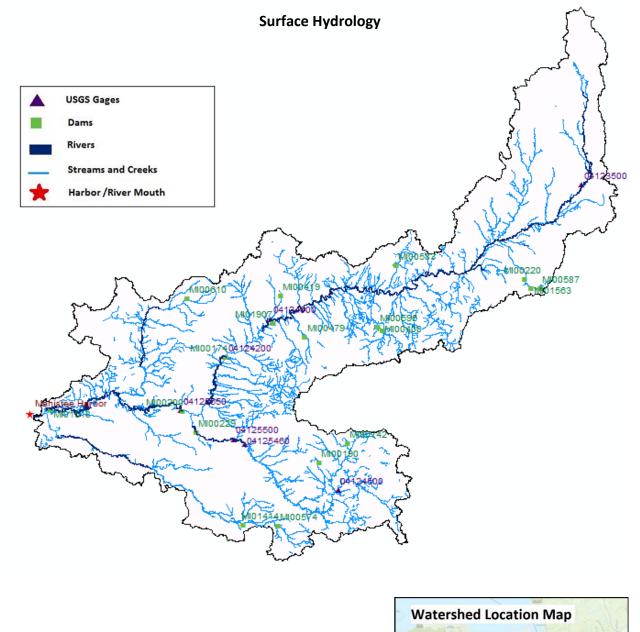
Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	1.55	0.59%
🔲 >180 m - 195 m	16.27	6.19%
🔤 >195 m - 210 m	106.86	40.64%
<u>>210 m - 225 m</u>	107.91	41.03%
<u>>225 m - 240 m</u>	27.35	10.40%
🔜 >240 m - 255 m	2.83	1.08%
>255 m - 270 m	0.19	0.07%
Size of Drainage Area	262.96	100.00%


Lincoln Watershed		
Elevation Statistics		
Size of Drainage Area	262.96	km²
Maximum	258.00	m
Minimum	178.00	m
Average	209.51	m
Standard Deviation	11.72	m

All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology



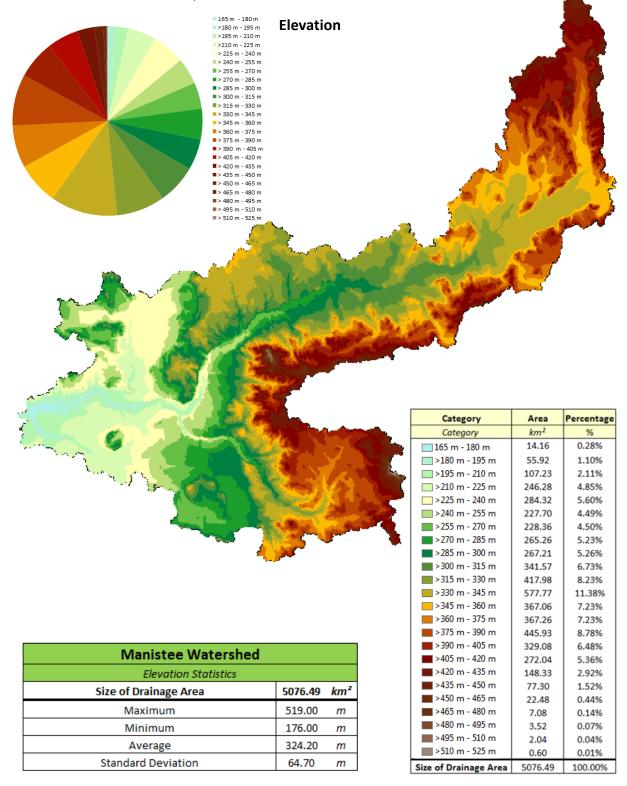
End moraines of coarse-textured till	11.73	4.46%
End moraines of fine-textured till	13.76	5.23%
Fine-textured glacial till	113.65	43.22%
Glacial outwash sand and gravel and postglacial alluvium	3.24	1.23%
Lacustrine sand and gravel	70.86	26.95%
Water	1.84	0.70%
Total Watershed Area	262.96	100.00%

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	127.41	48.45%
Silt, Sand, and Gravel	133.71	50.85%
Water	1.84	0.70%
Total Watershed Area	262.96	100.00%

APPENDIX Y. MANISTEE RIVER WATERSHED (20)

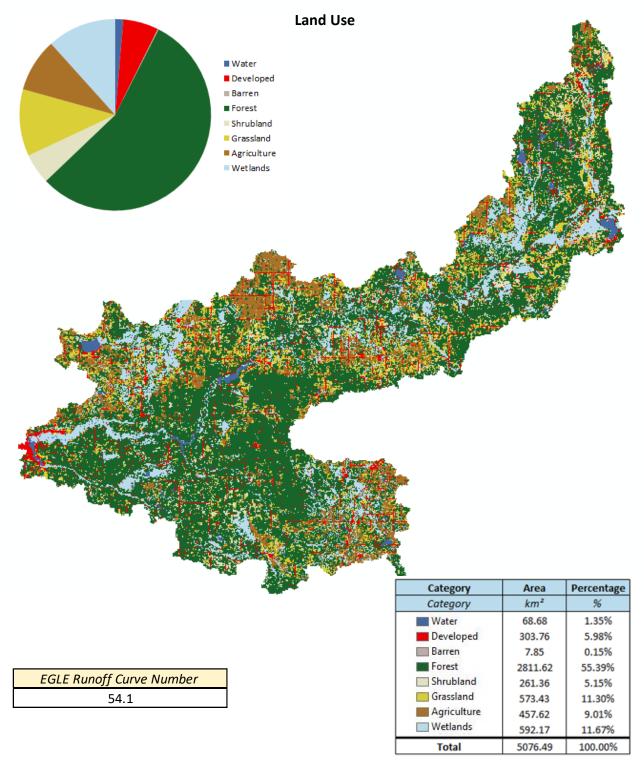
20, MANISTEE RIVER WATERSHED

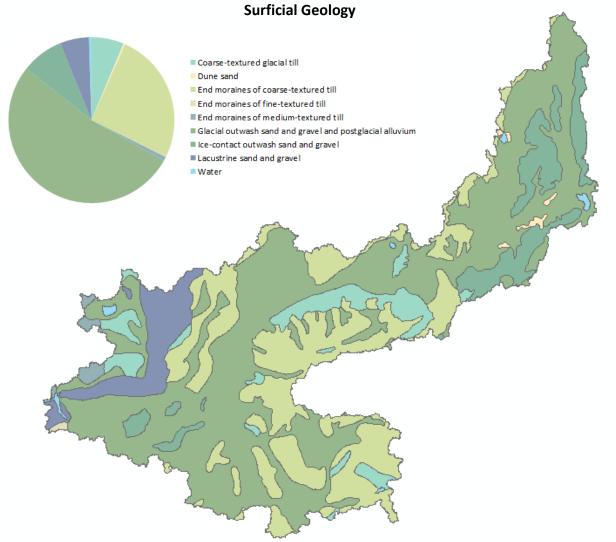

Dam Information and USGS Streamgages

USACE's National Inventory of Dams (NID)					
NIDID	Dam Name	Longitude	Latitude		
National ID	Official Name	Decimal Degrees	Decimal Degrees		
MI00200	Тірру	-85.938300	44.258300		
MI00174	Hodenpyl	-85.820000	44.363000		
MI01414	Little Widewaters Flooding Dam	-85.774910	44.036020		
MI01518	Peters Bayou Dam	-86.295000	44.261670		
MI01563	Cannon Creek #2 Flooding Dam	-84.988390	44.493130		
MI00190	Olga Lake Dam	-85.568860	44.157480		
MI01907	Kerr Upper Dam	-85.691670	44.428330		
MI00220	Horseshoe Lake Dam	-85.006810	44.509930		
MI00229	Stronach Dam	-85.900000	44.216670		
MI00400	Lake Billings Dam	-85.395000	44.413330		
MI00419	Wheeler Creek Dam	-85.670000	44.483330		
MI00479	White Lake Dam	-85.605000	44.401670		
MI00574	Luther Pond Dam	-85.681300	44.034860		
MI00583	Headquarters Lake Dam	-85.355000	44.540000		
MI00587	Cannon Creek Dam #1	-84.964830	44.492180		
MI00596	Manton Millpond Dam	-85.407640	44.420810		
MI00610	Copemish Dam	-85.925000	44.478330		
MI00742	Norman Smith Dam	-85.491670	44.195000		

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4123500	MANISTEE RIVER NEAR GRAYLING, MI	-84.847258	44.693068	
4124000	MANISTEE RIVER NEAR SHERMAN, MI	-85.698679	44.436392	yes
4124200	MANISTEE RIVER NEAR MESICK, MI	-85.820905	44.36306	yes
4124500	EAST BRANCH PINE RIVER NEAR TUSTIN, MI	-85.517277	44.102511	yes
4125460	PINE RIVER AT HIGH SCHOOL BRIDGE NR HOXEYVILLE, MI	-85.769786	44.19334	yes
4125500	PINE RIVER NEAR HOXEYVILLE, MI	-85.799510	44.203062	
4125550	MANISTEE RIVER NEAR WELLSTON, MI	-85.941742	44.25945	yes
4126000	MANISTEE RIVER NEAR MANISTEE, MI	-86.198973	44.270559	
	Number of Active USGS Stream Gage's in Drainage A	rea (2009)		5

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

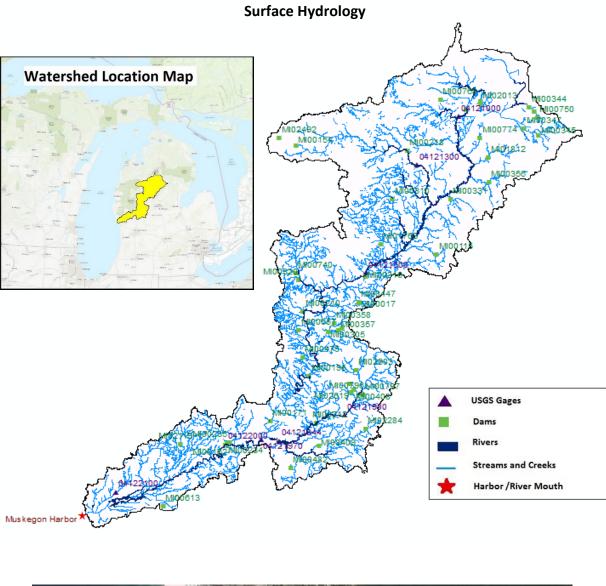

20, MANISTEE RIVER WATERSHED


All Elevation Measurements with Respect to North American Datum 1983

297

20, MANISTEE RIVER WATERSHED


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend 20, MANISTEE RIVER WATERSHED


Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	320.36	6.31%
Dune sand	18.16	0.36%
End moraines of coarse-textured till	1296.67	25.54%
End moraines of fine-textured till	6.07	0.12%
End moraines of medium-textured till	41.03	0.81%
Glacial outwash sand and gravel and postglacial alluvium	2669.21	52.58%
Ice-contact outwash sand and gravel	414.60	8.17%
Lacustrine sand and gravel	286.21	5.64%
Water	24.18	0.48%
Total Watershed Area	5076.49	100.00%

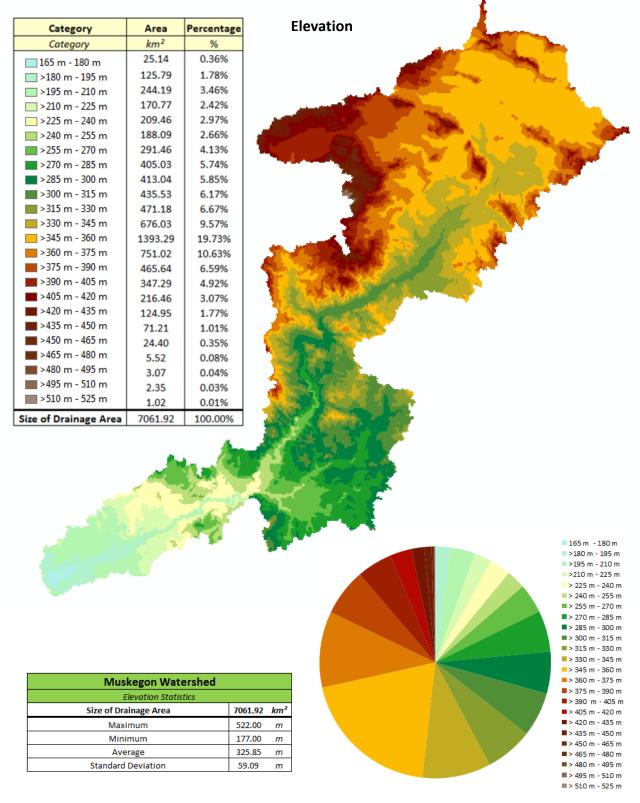
20, MANISTEE RIVER WATERSHED

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	6.07	0.12%
Silt, Sand, and Gravel	5046.24	99.40%
Water	24.18	0.48%
Total Watershed Area	5076.49	100.00%

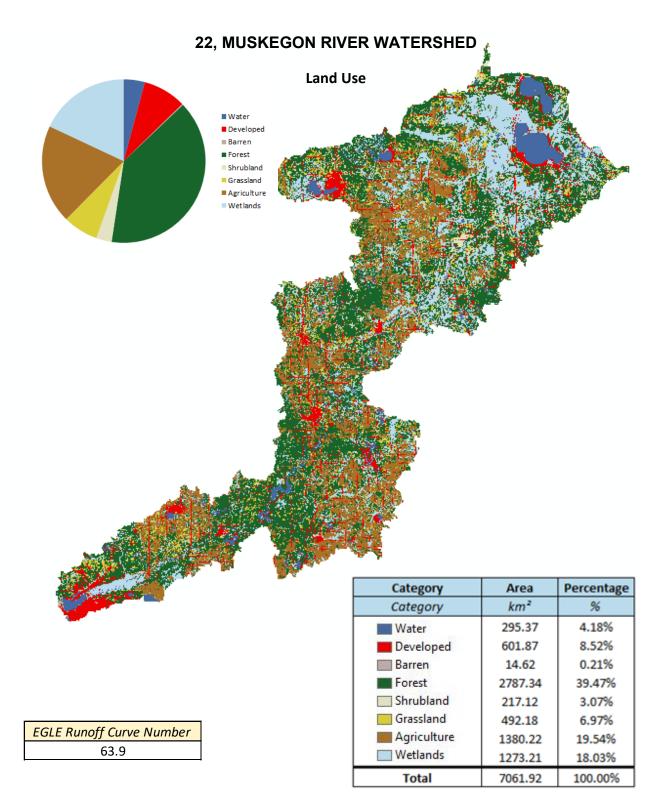
APPENDIX Z. MUSKEGON RIVER WATERSHED (22)

300


22, MUSKEGON RIVER WATERSHED

Dam Information and USGS Streamgages

	USACE's National Inventory of Dams (NID)						
NIDID	Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00195	Rogers	-85.478300	43.613300	MI00316	Lake Lure Dam	-85.258330	43.891670
MI00171	Hardy	-85.629100	43.487000	MI00320	Nartron Dam	-85.516670	43.883340
MI00162	Croton	-85.801700	43.421700	MI00331	Old Fur Farm Dam	-84.925000	44.105000
MI00212	Morley Dam	-85.450000	43.483300	MI00343	Backus Creek Dam	-84.595000	44.346670
MI00115	Doc and Tom Lake Level Control Structure	-84.983330	43.950000	MI00344	Little Mud Lake Dam	-84.611730	44.358750
MI00154	Brandy Brook Dam	-85.523330	44.258340	MI00345	Denton Creek Flooding Dam	-84.577770	44.279380
MI00017	Lower Lake Miramichi Dam	-85.283330	43.816670	MI00347	Lake James Dam	-84.633330	44.298330
MI01763	Woods Dam	-85.196660	43.980000	MI00356	Townline Creek Flooding Dam	-84.773330	44.151670
MI01812	Wraco Lodge Dam	-84.774100	44.221000	MI00357	Pickerel Lake Dam	-85.363330	43.741660
MI02012	Houghton Lake Flats North Unit Dam	-84.803340	44.378330	MI00358	Featherbed Dam	-85.380000	43.761670
MI02013	Houghton Lake Flats South Unit Dam	-84.803340	44.371670	MI00408	Lower Canadian Lakes Dam	-85.306660	43.573330
MI00210	Buckhorn Creek Dam	-85.500000	43.793330	MI00409	Indian Lake Dam	-85.442150	43.416590
MI02119	Peterson Dam	-85.973630	43.424600	MI00447	Lake Miramichi Dam (Upper)	-85.283330	43.820000
MI00214	Haymarsh Lake Dam	-85.350000	43.746670	MI00475	Baumunk Dam	-85.503330	43.666670
MI00218	Falmouth Dam	-85.090000	44.241660	MI00482	Brook Cherith Dam	-85.550000	43.356670
MI00222	Reedsburg Dam	-84.860000	44.355000	MI00613	Muskegon Waste Water Lagoons	-86.041660	43.250000
MI02284	Tamarack Creek Dam	-85.263340	43.463330	MI00657	Ray C. Andres Dam	-85.516670	43.741660
MI00234	Rowe Dam No 1	-85.796670	43.425000	MI00705	Upper Canadian Lakes Dam	-85.323330	43.590000
MI00235	Rowe Dam No 2	-85.786670	43.428330	MI00740	Thompson s Pond Dam	-85.526660	43.901670
MI02492	Archie Castle s Dam	-85.588610	44.281670	MI00750	Backus Lake Dam	-84.581670	44.330000
MI02603	Lower Dead Stream Dam	-85.296390	43.630000	MI00768	Lake Street Dam And Flume	-84.958340	44.385000
MI02619	Olger Lake Dam	-85.315900	43.566700	MI00774	Hardacre Dam	-84.806660	44.275000
MI00305	Little John Flooding Dam	-85.403340	43.736670	MI00796	Sunset Lake Dam	-85.279750	43.561670
MI00310	Marion Dam	-85.150000	44.106670	MI00797	Lake Laura Dam	-85.272220	43.560550


USGS Stream Gage's						
STA ID	Station Name	Longitude	Latitude	Active		
4121000	MUSKEGON RIVER NEAR MERRITT, MI	-84.890033	44.33557			
4121300	CLAM RIVER AT VOGEL CENTER, MI	-85.052815	44.200569	yes		
4121500	MUSKEGON RIVER AT EVART, MI	-85.255319	43.899186	yes		
4121900	LITTLE MUSKEGON RIVER NEAR MORLEY, MI	-85.342536	43.502529			
4121944	LITTLE MUSKEGON RIVER NEAR OAK GROVE, MI	-85.595599	43.430858	yes		
4121970	MUSKEGON RIVER NEAR CROTON, MI	-85.665324	43.434746	yes		
4122000	MUSKEGON RIVER AT NEWAYGO, MI	-85.801162	43.422243			
4122100	BEAR CREEK NEAR MUSKEGON, MI	-86.222838	43.288625	yes		
Number of Active USGS Stream Gage's in Drainage Area (2009)						

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

22, MUSKEGON RIVER WATERSHED

All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

22, MUSKEGON RIVER WATERSHED

Surficial Geology

Coarse-textured glacial till

Fine-textured glacial till

Lacustrine sand and gravel

Medium-textured glacial till

Peat and muck

Water

End moraines of coarse-textured till

Ice-contact outwash sand and gravel

End moraines of fine-textured till End moraines of medium-textured till

Dune sand

Category

Category

Glacial outwash sand and gravel and postglacial alluvium

Total Watershed Area

Area

km²

742.50

63.70

1647.24

170.32

3.94

533.88

2881.07

370.12

332.25

32.56

110.54

173.78

7061.92

Percentage

%

10.51%

0.90%

23.33%

2.41%

0.06%

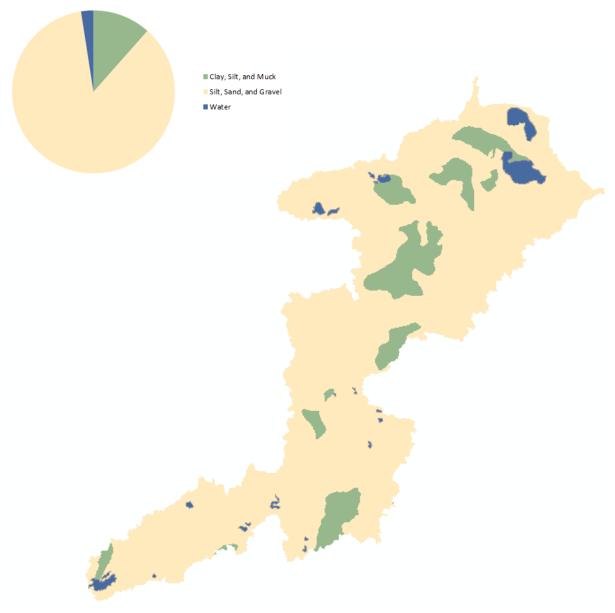
7.56%

40.80%

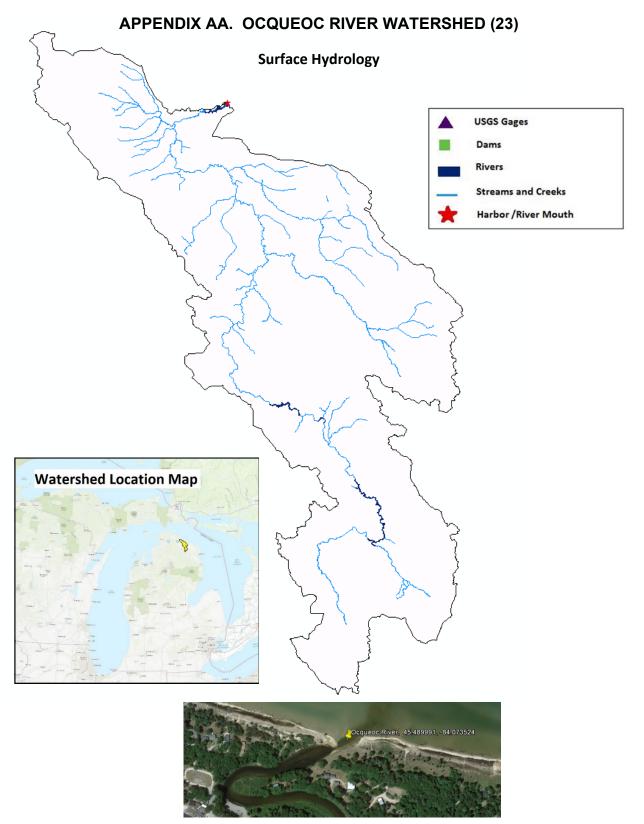
5.24%

4.70%

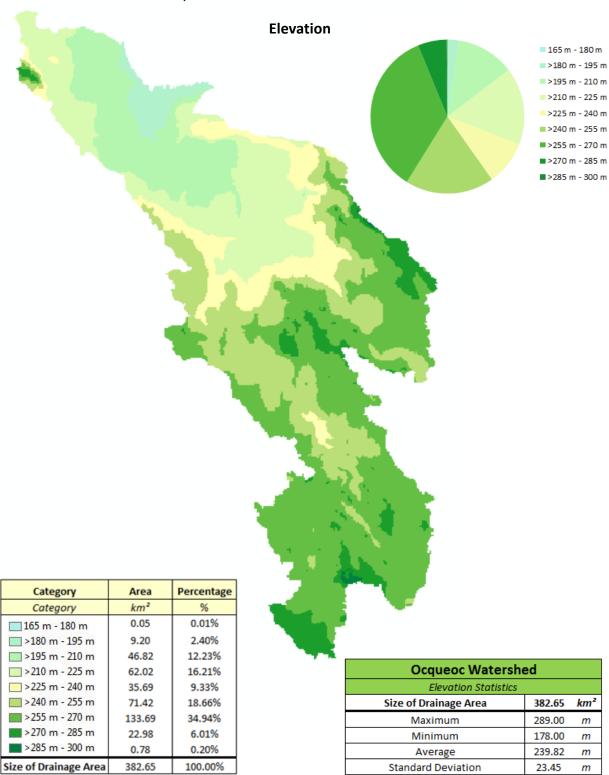
0.46%


1.57%

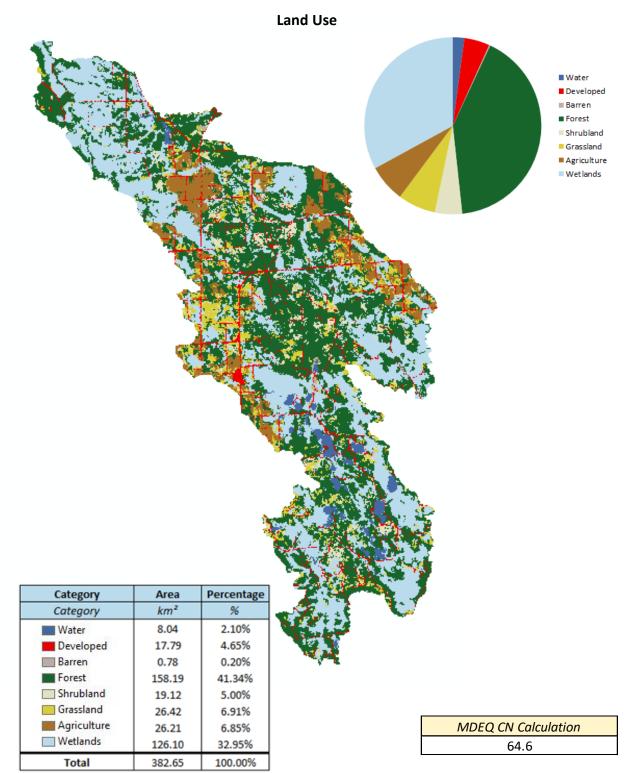
2.46%


100.00%

22, MUSKEGON RIVER WATERSHED

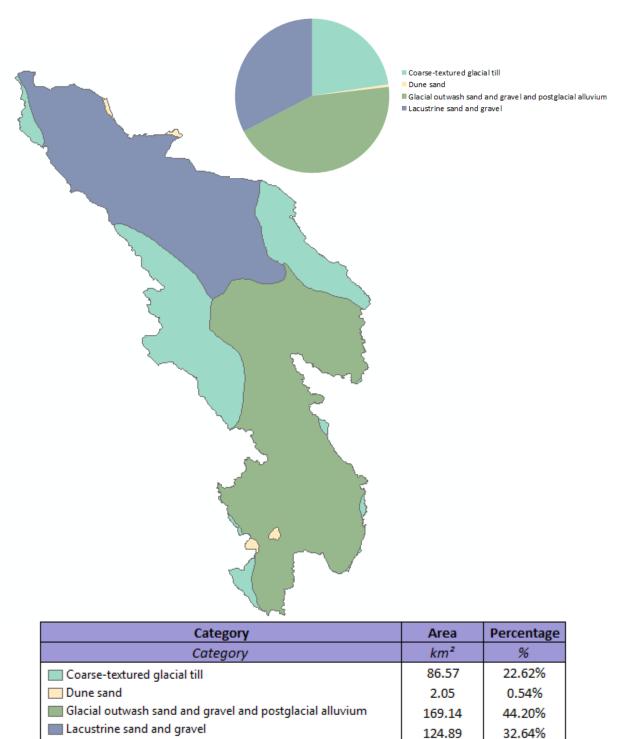

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	814.74	11.54%
Silt, Sand, and Gravel	6073.40	86.00%
Water	173.78	2.46%
Total Watershed Area	7061.92	100.00%


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

23, OCQUEOC RIVER WATERSHED

All Elevation Measurements with Respect to North American Datum 1983


23, OCQUEOC RIVER WATERSHED

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

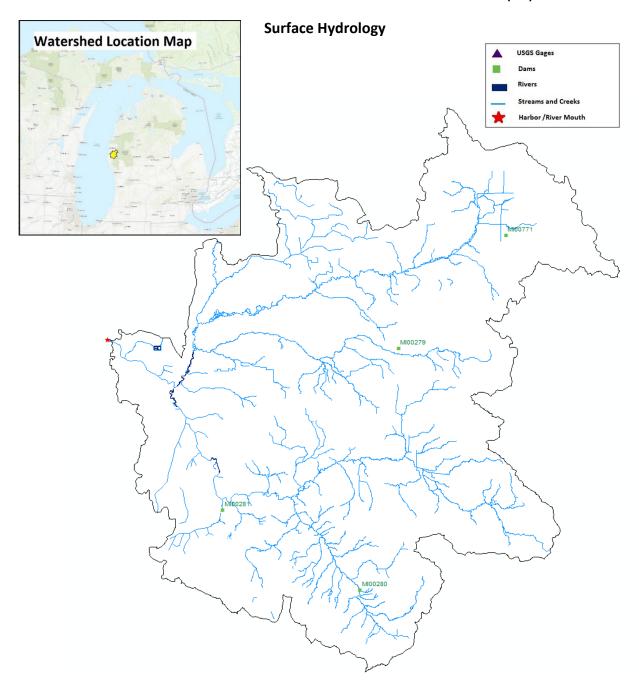
23, OCQUEOC RIVER WATERSHED

Surficial Geology

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

382.65

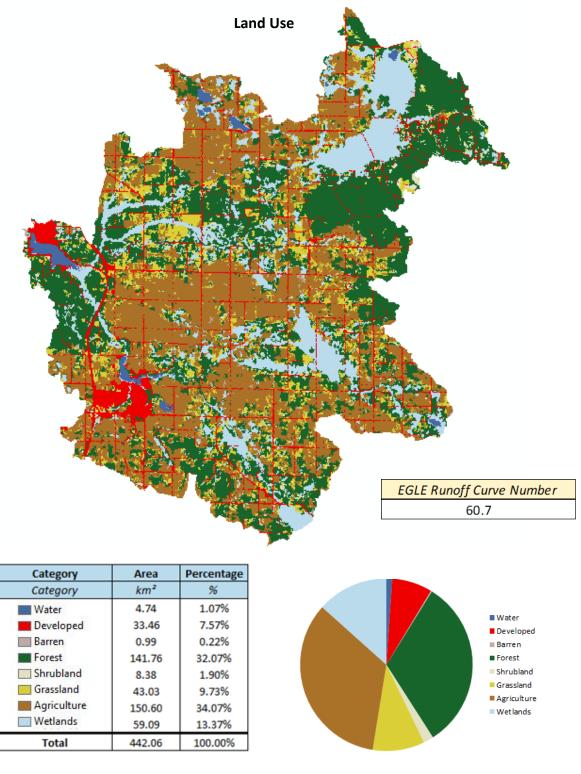
100.00%


Total Watershed Area

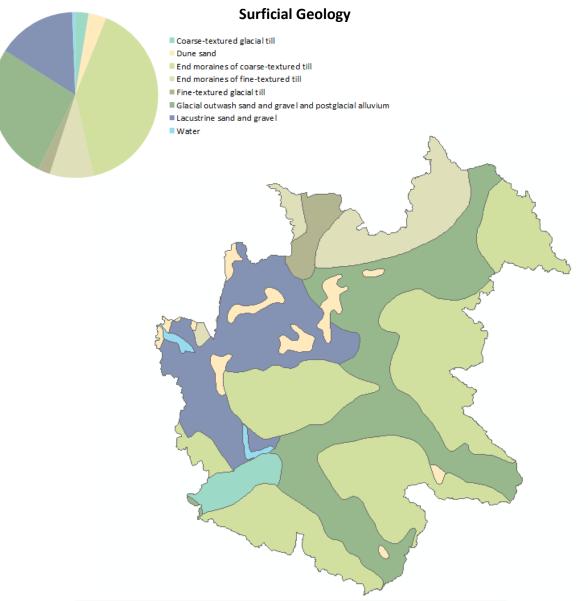
23, OCQUEOC RIVER WATERSHED

Surficial Geology (Simplified)

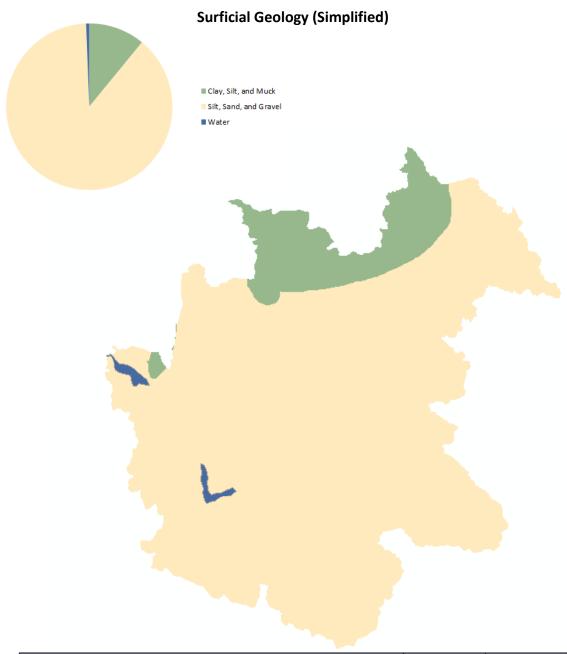
Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	382.65	100.00%
Total Watershed Area	382.65	100.00%

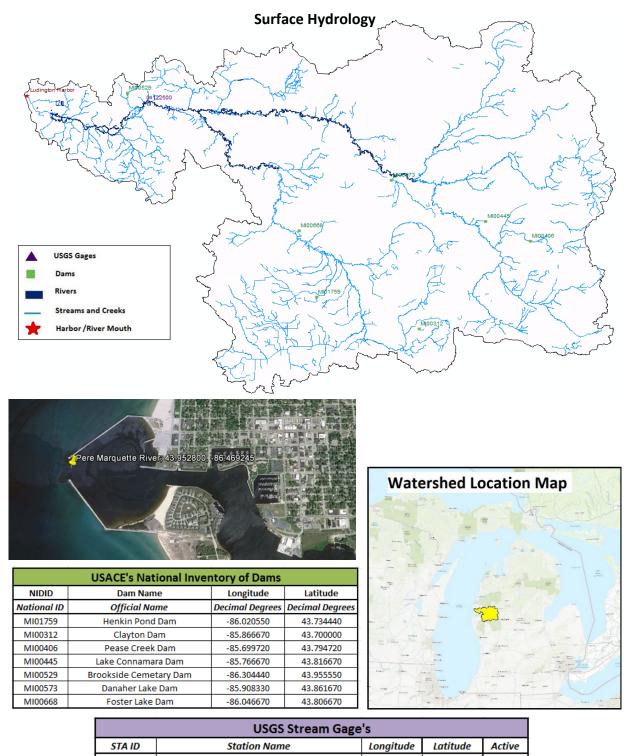

APPENDIX BB. PENTWATER RIVER WATERSHED (24)

U	SACE's National Inve	ntory of Dams	Pentwater River; 43.782148, -86.443889	
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00281	Hart Lake	-86.366700	43.700000	
MI00279	Crystal Valley Dam	-86.250000	43.778330	
MI00280	Gales Pond Dam	-86.275000	43.661670	
MI00771	Whiskey Creek Dam #2	-86.178340	43.833330	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

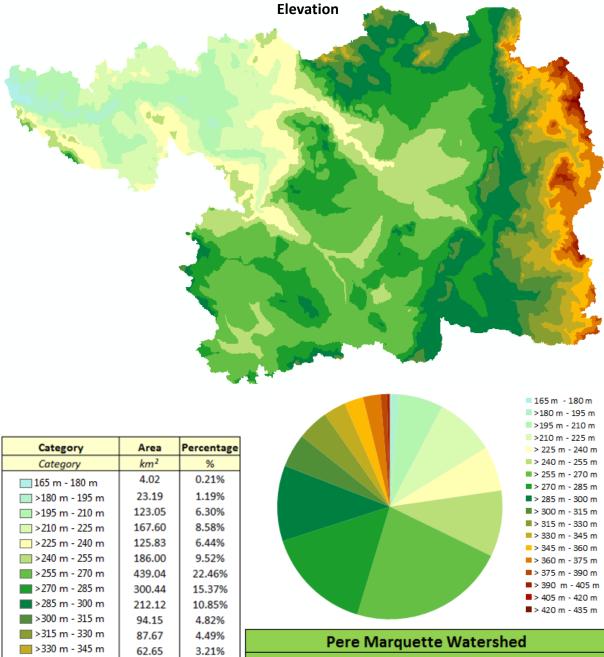
			Elevation		
	= 165 m	- 180 m			
	=>180 m				
	■>195 m	- 210 m			
	=>210 m				
	>225 m				
	>240 m			Lat.	
	■ >255 m ■ >270 m				
	■>285 m			1	
Category	Area	Percentage	and the second sec		
Category	km ²	%			
🔲 165 m - 180 m	2.81	0.64%			
🔝 >180 m - 195 m	27.56	6.24%			
🔲 >195 m - 210 m	123.01	27.83%			
<u>>210 m - 225 m</u>	119.26	26.98%	Pentwater Watershed		
≥225 m - 240 m	57.34	12.97%			
>240 m - 255 m	43.23	9.78%	Elevation Statistics		
>255 m - 270 m	34.28	7.76%	Size of Drainage Area	442.06	km²
>270 m - 285 m	23.15	5.24%	Maximum	305.00	m
>285 m - 300 m	10.46	2.37%	Minimum	177.00	m
>300 m - 315 m	0.95	0.22%	Average	223.55	m
			Standard Deviation	26.12	
Size of Drainage Area	442.06	100.00%	Standard Deviation	20.12	m


All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	11.53	2.61%
Dune sand	15.51	3.51%
End moraines of coarse-textured till	178.24	40.32%
End moraines of fine-textured till	37.83	8.56%
Fine-textured glacial till	10.51	2.38%
Glacial outwash sand and gravel and postglacial alluvium	117.68	26.62%
Lacustrine sand and gravel	68.11	15.41%
Water	2.65	0.60%
Total Watershed Area	442.06	100.00%

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	48.34	10.94%
Silt, Sand, and Gravel	391.06	88.46%
Water	2.65	0.60%
Total Watershed Area	442.06	100.00%

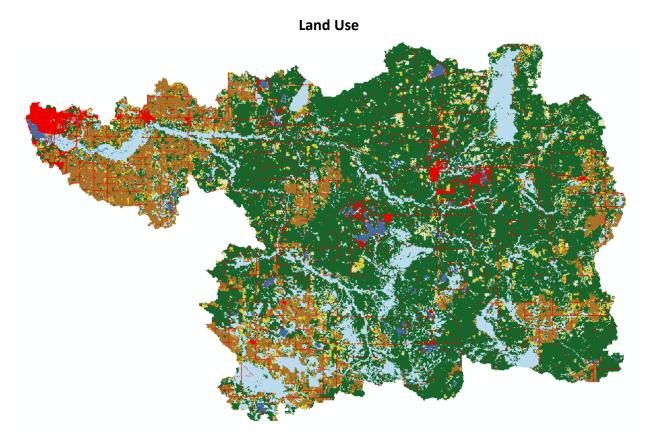

APPENDIX CC. PERE MARQUETTE RIVER WATERSHED (25)

 4122500
 PERE MARQUETTE RIVER AT SCOTTVILLE, MI
 -86.278690
 43.945006
 yes

 Number of Active USGS Stream Gage's in Drainage Area (2009)
 1

 Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams

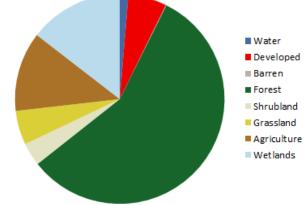
USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

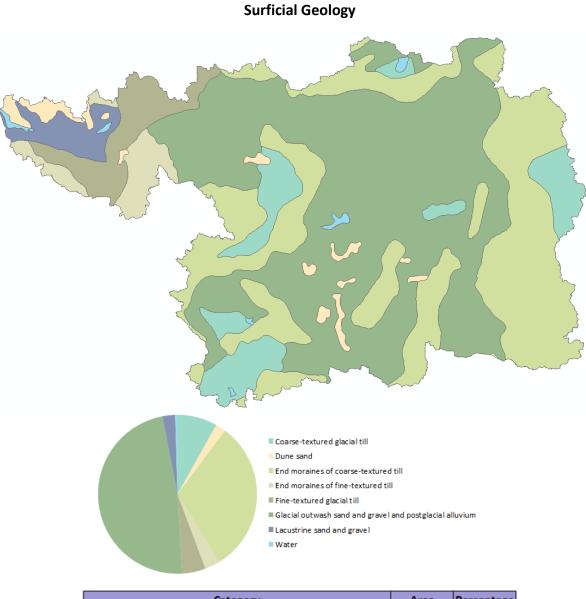


25, PERE MARQUETTE RIVER WATERSHED

	9.52%	186.00	🔜 >240 m - 255 m
	22.46%	439.04	>255 m - 270 m
	15.37%	300.44	= > 270 m - 285 m
	10.85%	212.12	= >285 m - 300 m
	4.82%	94.15	>300 m - 315 m
Pere Ma	4.49%	87.67	> 315 m - 330 m
Pereivia	3.21%	62.65	= > 330 m - 345 m
El	2.76%	53.88	<mark>—</mark> >345 m - 360 m
Size of Drai	2.51%	48.98	= > 360 m - 375 m
Maxir	0.94%	18.37	📕 > 375 m - 390 m
	0.33%	6.48	📕 >390 m - 405 m
Minir	0.05%	0.99	📕 >405 m - 420 m
Aver	0.00%	0.06	📕 >420 m - 435 m
Standard I	100.00%	1954.52	Size of Drainage Area
	· · · · · · · · · · · · · · · · · · ·		

levation Statistics 1954.52 km² inage Area mum 426.00 m mum 177.00 m 269.12 m rage Deviation 42.30 m


All Elevation Measurements with Respect to North American Datum 1983

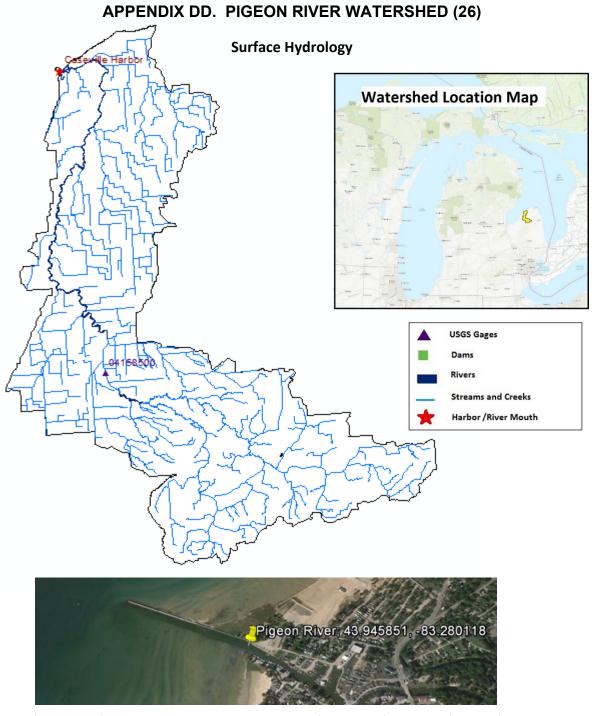

25, PERE MARQUETTE RIVER WATERSHED

EGLE Runoff Curve Number
58.7

Category	Area	Percentage
Category	km²	%
Water	25.87	1.32%
Developed	116.16	5.94%
Barren	1.68	0.09%
Forest	1114.31	57.01%
Shrubland	69.81	3.57%
Grassland	102.74	5.26%
Agriculture	239.86	12.27%
Wetlands	284.09	14.53%
Total	1954.52	100.00%

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

25, PERE MARQUETTE RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	158.52	8.11%
Dune sand	40.84	2.09%
End moraines of coarse-textured till	605.48	30.98%
End moraines of fine-textured till	61.14	3.13%
Fine-textured glacial till	92.78	4.75%
Glacial outwash sand and gravel and postglacial alluvium	936.01	47.89%
Lacustrine sand and gravel	50.47	2.58%
Water	9.27	0.47%
Total Watershed Area	1954.52	100.00%

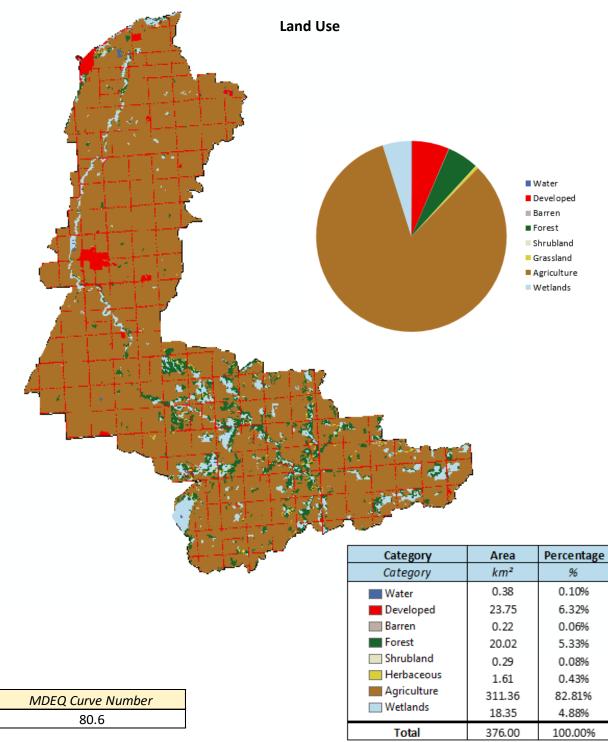
Surficial Geology (Simplified) Clay, Silt, and Muck Silt, Sand, and Gravel ■ Water

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	153.92	7.88%
Silt, Sand, and Gravel	1791.32	91.65%
Water	9.27	0.47%
Total Watershed Area	1954.52	100.00%

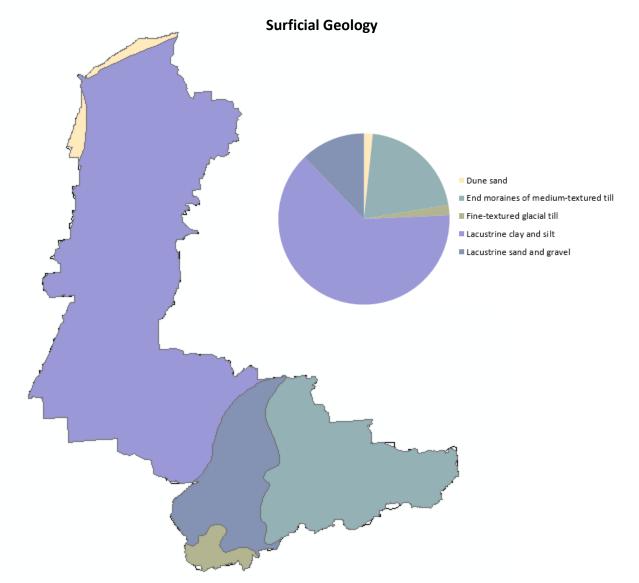
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

25, PERE MARQUETTE RIVER WATERSHED

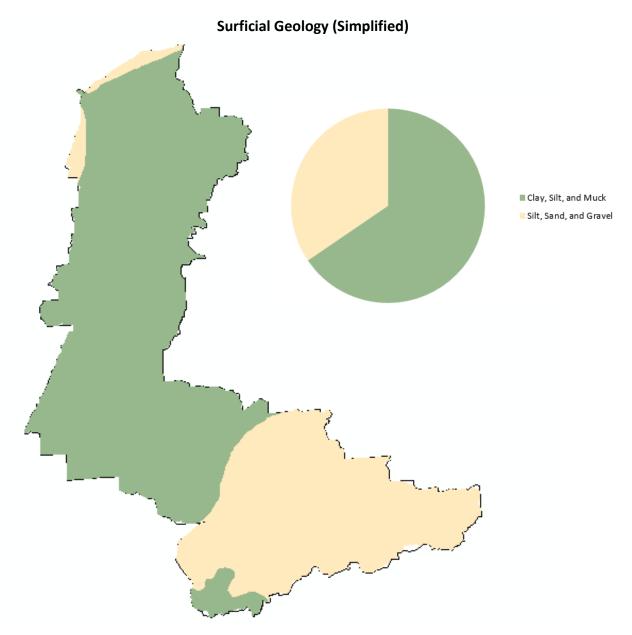
USGS Stream Gage's							
STA ID Station Name Longitude Latitude				Active			
4158500 PIGEON RIVER NEAR OWENDALE, MI		-83.246064	43.763627				
Number of Active USGS Stream Gage's in Drainage Area (2009)							


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

321

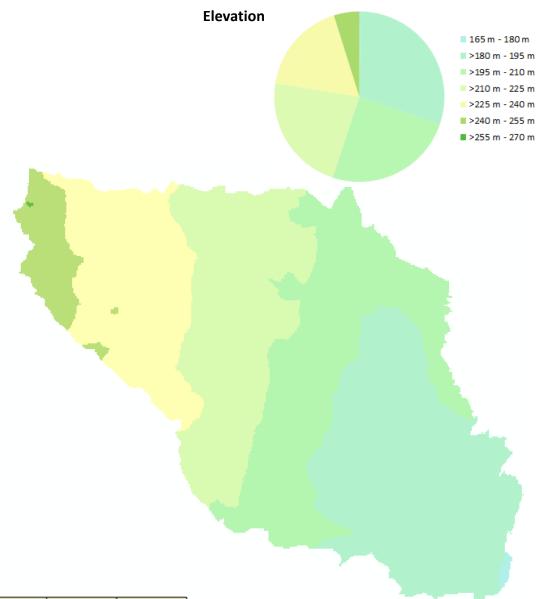

Elevation 🗖 165 m - 180 m ■ >180 m - 195 m ■ >195 m - 210 m >210 m - 225 m > 225 m - 240 m > 240 m - 255 m

Category	Area	Percentage			
Category	km²	%	Pigeon Watershed		
🔲 165 m - 180 m	0.13	0.03%	Elevation Statistics		
>180 m - 195 m	171.26	45.55%	Elevation statistics	r	
>195 m - 210 m	45.14	12.01%	Size of Drainage Area	376.00	km²
>210 m - 225 m	34.65	9.22%	Maximum	251.00	т
>225 m - 240 m	114.91	30.56%	Minimum	177.00	т
≥240 m - 255 m	9.91	2.64%	Average	205.67	т
Size of Drainage Area	376.00	100.00%	Standard Deviation	19.43	т


All Elevation Measurements with Respect to North American Datum 1983

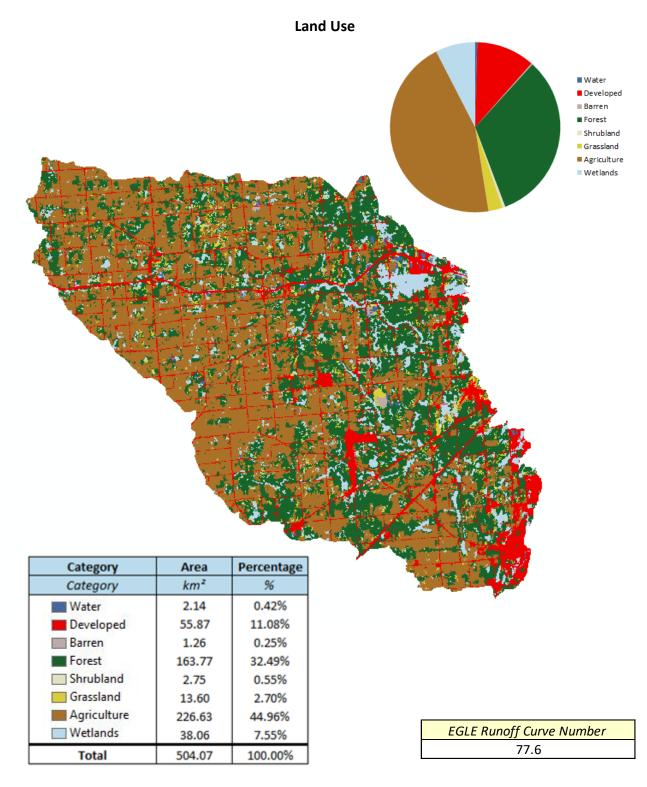
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Category	Area	Percentage
Category	km²	%
Dune sand	6.30	1.67%
End moraines of medium-textured till	77.71	20.67%
Fine-textured glacial till	7.34	1.95%
Lacustrine clay and silt	238.91	63.54%
Lacustrine sand and gravel	45.74	12.17%
Total Watershed Area	376.00	100.00%



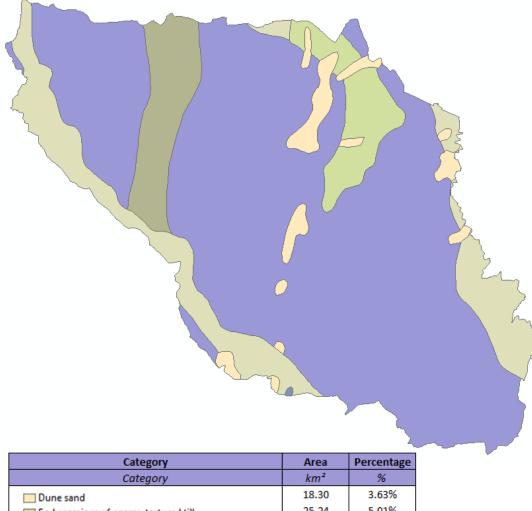
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	246.25	65.49%
Silt, Sand, and Gravel	129.75	34.51%
Total Watershed Area	376.00	100.00%

APPENDIX EE. PINE RIVER WATERSHED (27)

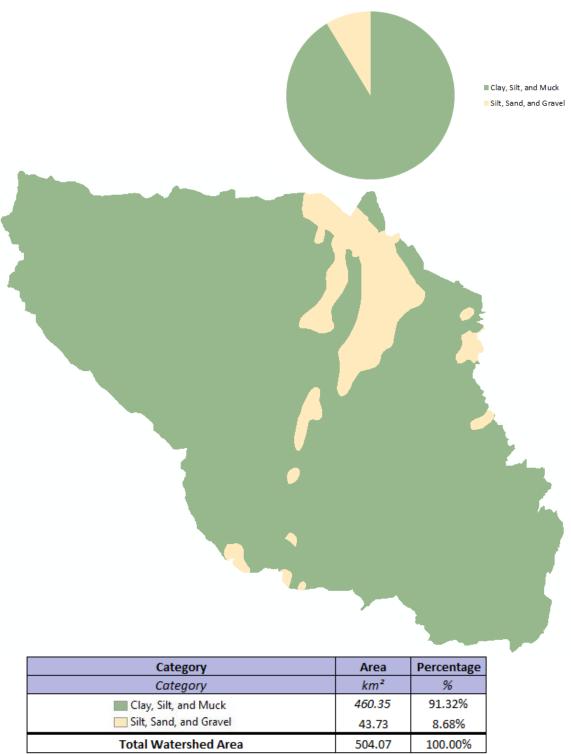

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

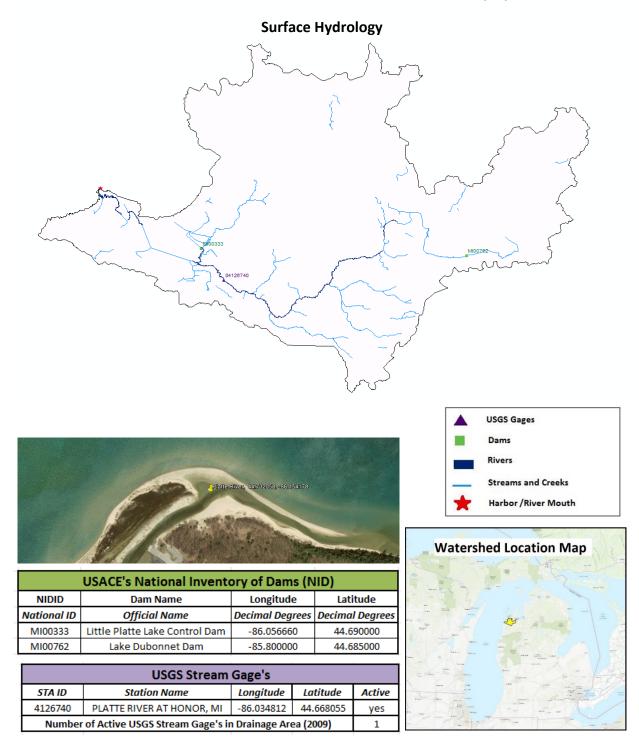
Category	Area	Percentage
Category	km²	%
165 m - 180 m	1.10	0.22%
📃 >180 m - 195 m	151.68	30.09%
🔲 >195 m - 210 m	124.90	24.78%
<u>>210 m - 225 m</u>	112.98	22.41%
<u>>225 m - 240 m</u>	89.01	17.66%
📃 >240 m - 255 m	24.30	4.82%
E >255 m - 270 m	0.10	0.02%
Size of Drainage Area	504.07	100.00%

Pine Watershed					
Elevation Statistics					
Size of Drainage Area	504.07	km²			
Maximum	256.00	m			
Minimum	177.00	m			
Average	209.51	m			
Standard Deviation	17.87	m			

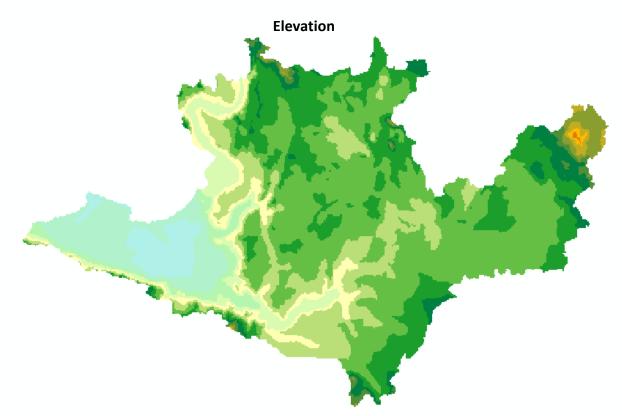

All Elevation Measurements with Respect to North American Datum 1983

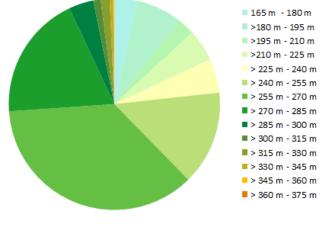
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


Surficial Geology


Dune sand
End moraines of coarse-textured till
End moraines of fine-textured till
Fine-textured glacial till
Lacustrine clay and silt
Lacustrine sand and gravel

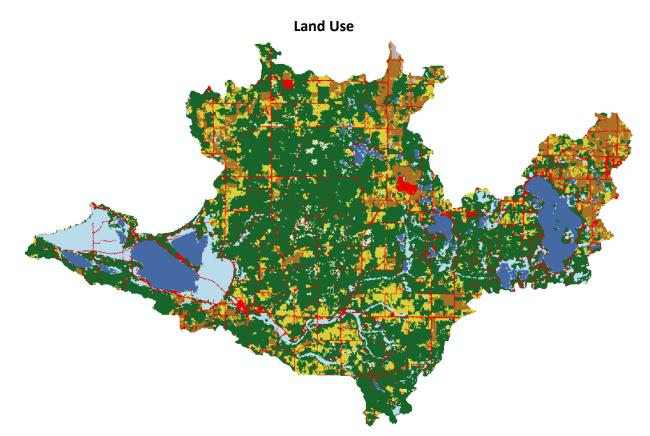
Category	km²	%
Dune sand	18.30	3.63%
End moraines of coarse-textured till	25.24	5.01%
End moraines of fine-textured till	68.19	13.53%
Fine-textured glacial till	31.70	6.29%
Lacustrine clay and silt	360.46	71.51%
Lacustrine sand and gravel	0.19	0.04%
Total Watershed Area	504.07	100.00%


Surficial Geology (Simplified)



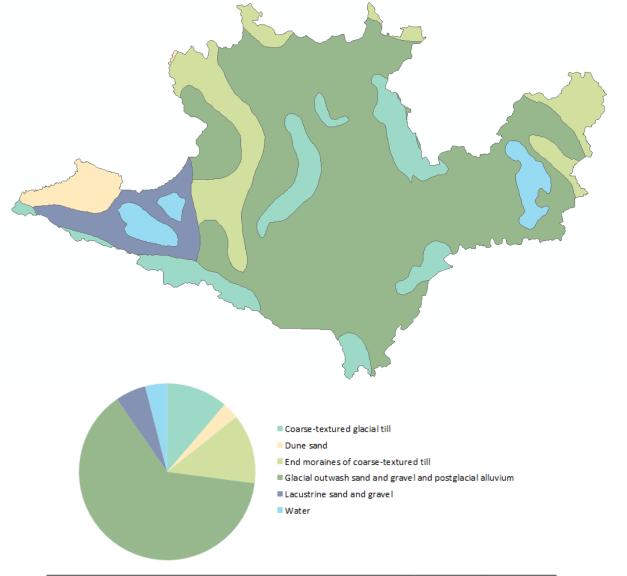
APPENDIX FF. PLATTE RIVER WATERSHED (28)

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

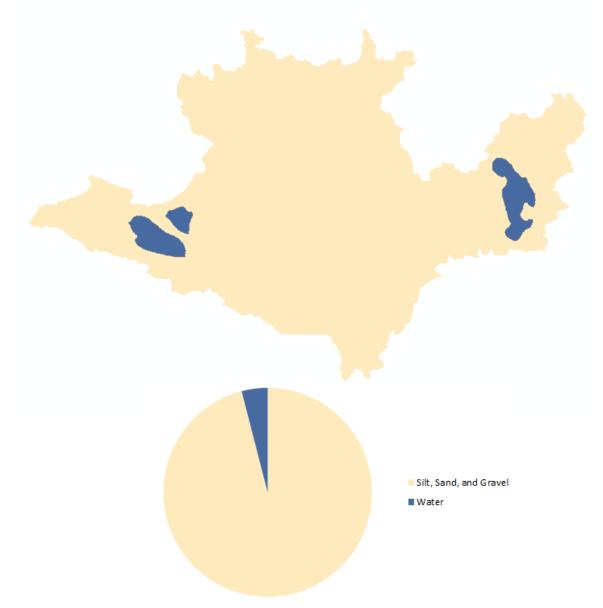


Category	Area	Percentage
Category	km²	%
🔜 165 m - 180 m	17.26	3.46%
🔜 >180 m - 195 m	35.72	7.17%
📃 >195 m - 210 m	12.73	2.55%
<u>>210 m - 225 m</u>	24.20	4.86%
<u>>225 m - 240 m</u>	26.05	5.23%
🔜 >240 m - 255 m	71.74	14.40%
≥255 m - 270 m	180.64	36.24%
== >270 m - 285 m	95.13	19.09%
== >285 m - 300 m	18.93	3.80%
> 300 m - 315 m	5.61	1.13%
≥315 m -330 m	6.82	1.37%
📒 >330 m - 345 m	2.63	0.53%
<mark></mark>	0.75	0.15%
> 360 m - 375 m	0.18	0.04%
Size of Drainage Area	498.40	100.00%

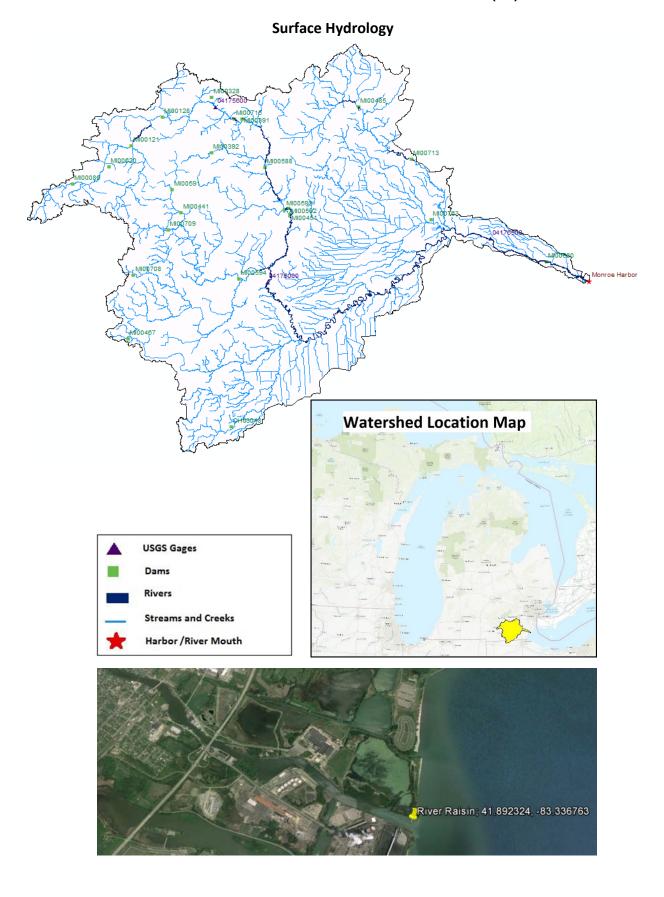
Platte Watershed				
Elevation Statistics				
Size of Drainage Area	498.40	km²		
Maximum	365.00	m		
Minimum	176.00	m		
Average	251.16	m		
Standard Deviation	31.33	m		


All Elevation Measurements with Respect to North American Datum 1983

EGLE Runoff	<mark>Curve Num</mark> t	per
54	4.1	
Category	Area	Percentage
Category Water	87.91	% 7.61%
Developed	33.35	6.69%
Barren	1.45	0.29%
Forest	268.23	53.82%
Shrubland	10.58	2.12%
Grassland	60.85	12.21%
Agriculture	45.69	9.17%
Wetlands	40.34	8.09%
Total	498.40	100.00%


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology



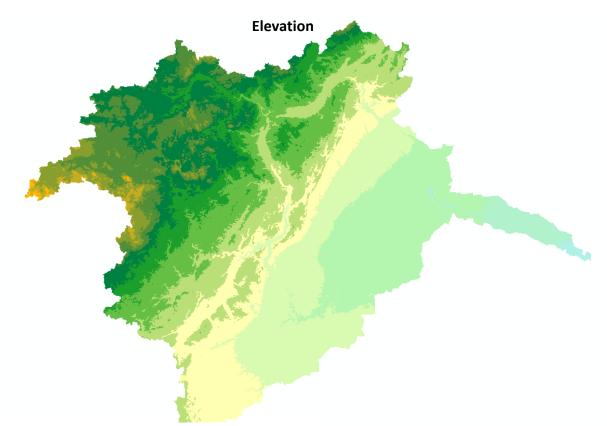
Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	56.15	11.27%
Dune sand	15.34	3.08%
End moraines of coarse-textured till	63.45	12.73%
Glacial outwash sand and gravel and postglacial alluvium	315.38	63.28%
Lacustrine sand and gravel	28.02	5.62%
Water	20.05	4.02%
Total Watershed Area	498.40	100.00%

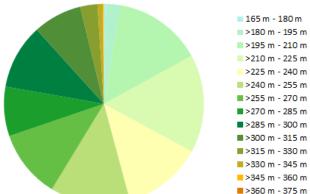
Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Silt, Sand, and Gravel	478.34	95.98%
Water	20.05	4.02%
Total Watershed Area	498.40	100.00%

APPENDIX GG. RAISIN RIVER WATERSHED (29)

29, RAISIN RIVER WATERSHED

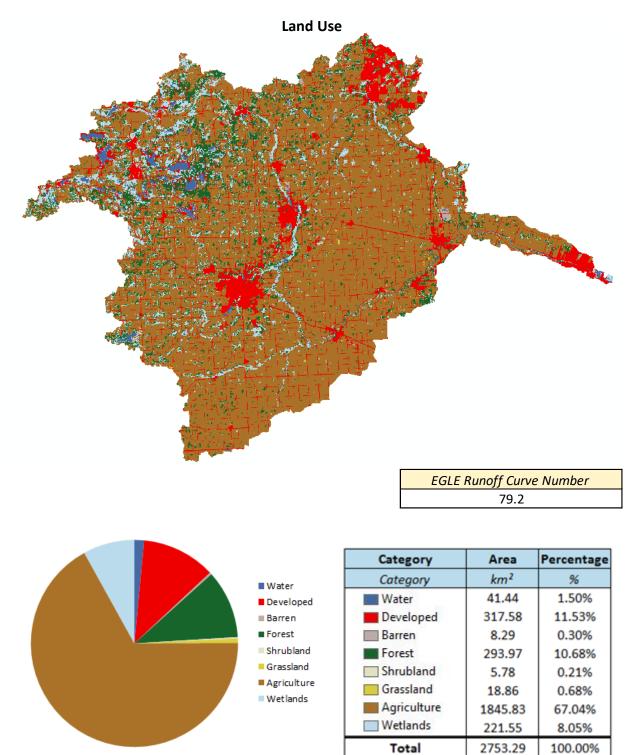

Dam Information and USGS Streamgages


USACE's National Inventory of Dams				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
OH03048	LYONS WWT LAGOON	-84.060000	41.690000	
MI00121	Brooklyn Dam	-84.246670	42.113330	
MI00128	Norvell Dam	-84.183330	42.155000	
MI00328	Sharon Mills Dam	-84.083340	42.183330	
MI00391	Ford Manchester Dam	-84.023600	42.149600	
MI00392	Iron Lake Dam	-84.086670	42.100000	
MI00441	Loch Erin Dam	-84.150000	42.011670	
MI00451	Globe Mill Dam	-83.931950	42.005000	
MI00467	Lake Hudson Dam	-84.261670	41.825000	
MI00485	Saline River Dam	-83.788330	42.163330	
MI00588	Atles Mill Dam	-83.980000	42.076670	
MI00591	Springville Mill Dam	-84.166660	42.046670	
MI00592	Standish Dam	-83.933610	42.015000	
MI00593	Tecumseh Dam	-83.942220	42.013330	
MI00594	Lake Adrian Dam	-84.037530	41.910530	
MI00620	Lake Columbia Dam	-84.292680	42.083110	
MI00680	Waterloo Dam	-83.420370	41.923610	
MI00708	Sparrow Dam	-84.248340	41.920000	
MI00709	Fry Lake Dam	-84.176670	41.986670	
MI00713	Milan Dam	-83.685000	42.083330	
MI00715	Manchester Mill Dam	-84.038600	42.150100	
MI00763	Macon River Dam	-83.648330	41.991660	
MI00086	Lake Somerset Dam	-84.366670	42.058330	

USGS Stream Gage's					
STA ID Station Name Longitude Latitude				Active	
4175600	RIVER RAISIN NEAR MANCHESTER, MI	-84.076058	42.168095	yes	
4176000	RIVER RAISIN NEAR ADRIAN, MI	-83.980499	41.904214	yes	
4176500	RIVER RAISIN NEAR MONROE, MI	-83.531046	41.960601	yes	
Number of Active USGS Stream Gage's in Drainage Area (2009)				3	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

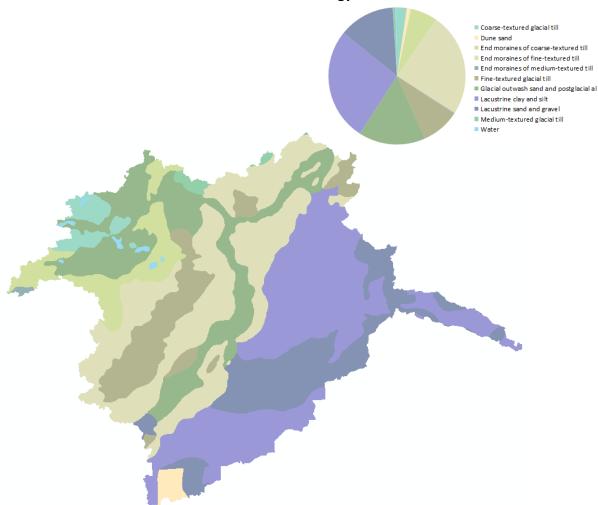
29, RAISIN RIVER WATERSHED



	■ >500 m - 575 m		
Raisin Watershed			
Elevation Statistics			
Size of Drainage Area	2753.29	km²	
Maximum	373.45	т	
Minimum	169.22	m	
Average	249.79	m	
Standard Deviation	37.07	m	

Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	9.60	0.35%
🔜 >180 m - 195 m	63.79	2.32%
📃 >195 m - 210 m	395.26	14.36%
📃 >210 m - 225 m	437.24	15.88%
📃 >225 m - 240 m	355.46	12.91%
🔜 >240 m - 255 m	355.30	12.90%
🔜 >255 m - 270 m	304.47	11.06%
>270 m - 285 m	220.13	7.99%
== >285 m - 300 m	289.44	10.51%
🔜 >300 m - 315 m	217.35	7.89%
🔜 >315 m - 330 m	76.91	2.79%
🔜 >330 m - 345 m	23.68	0.86%
<mark></mark> >345 m - 360 m	4.56	0.17%
= > 360 m - 375 m	0.10	0.00%
Size of Drainage Area	2753.29	100.00%

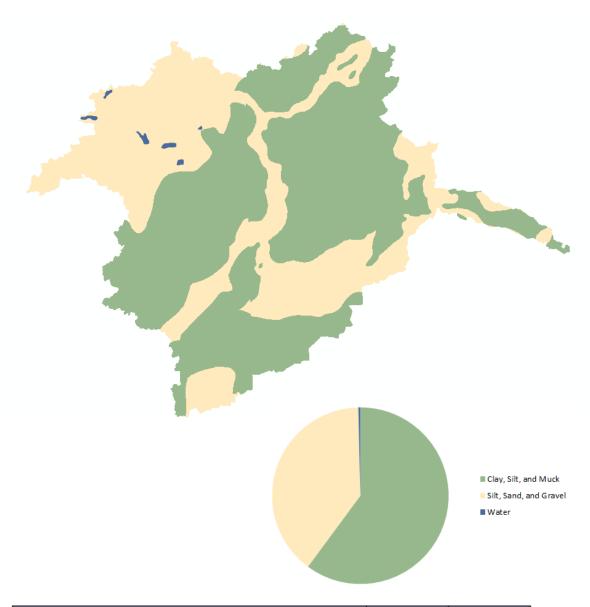
All Elevation Measurements with Respect to North American Datum 1983



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

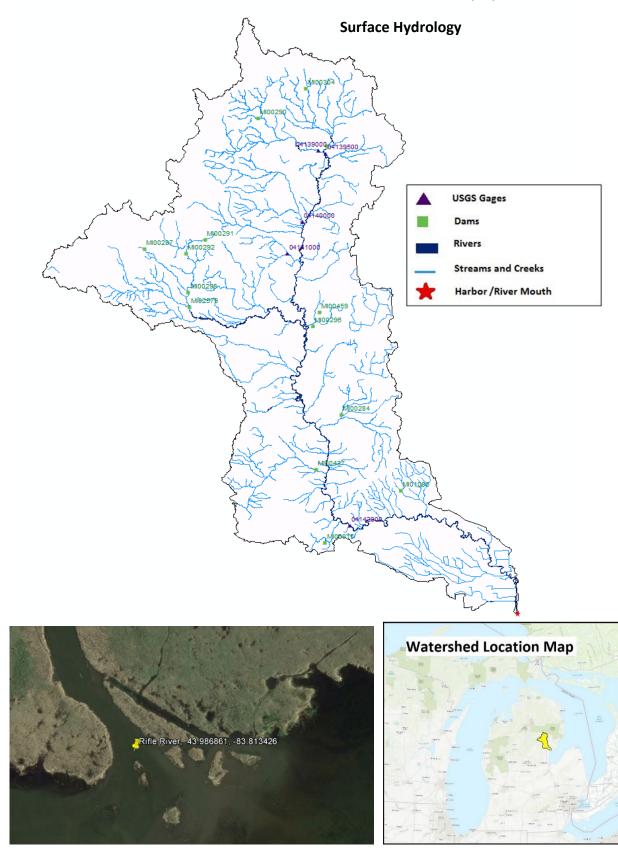
29, RAISIN RIVER WATERSHED

29, RAISIN RIVER WATERSHED



Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	63.76	2.32%
Dune sand	26.46	0.96%
End moraines of coarse-textured till	175.95	6.39%
End moraines of fine-textured till	671.98	24.41%
End moraines of medium-textured till	4.57	0.17%
Fine-textured glacial till	247.66	8.99%
Glacial outwash sand and gravel and postglacial alluvium	435.60	15.82%
Lacustrine clay and silt	733.75	26.65%
Lacustrine sand and gravel	362.47	13.16%
Medium-textured glacial till	17.48	0.63%
Water	10.16	0.37%
Total Watershed Area	2753.29	99.87%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States and 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

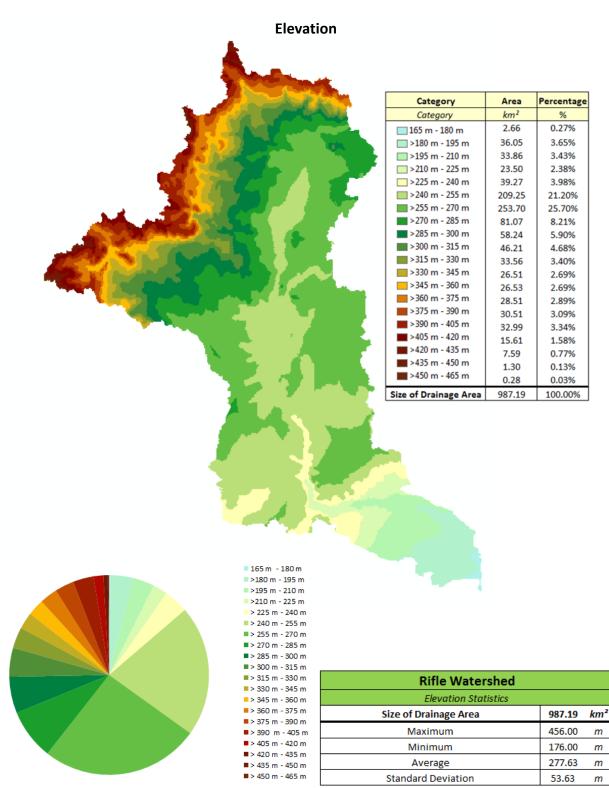

29, RAISIN RIVER WATERSHED

Surficial Geology (Simplified)

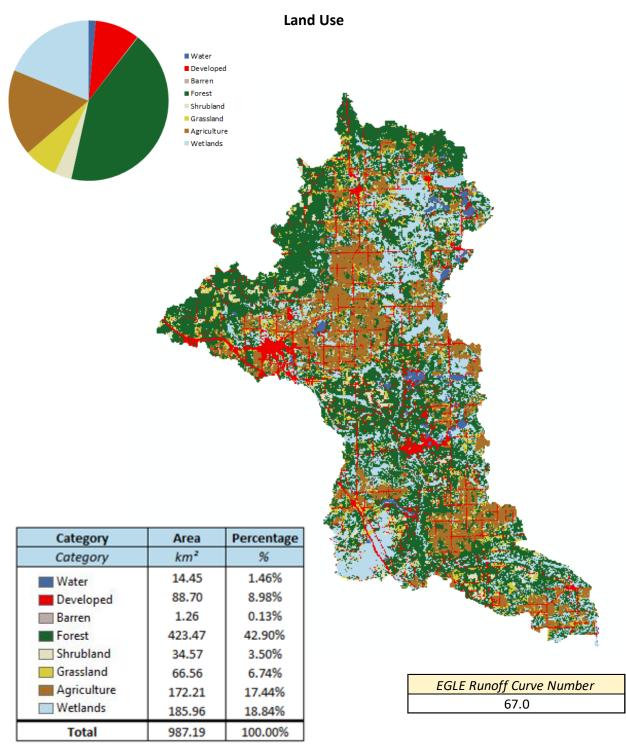
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	1653.39	60.05%
Silt, Sand, and Gravel	1086.28	39.45%
Water	10.16	0.37%
Total Watershed Area	2753.29	99.87%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States and 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

APPENDIX HH. RIFLE RIVER WATERSHED (30)

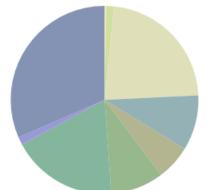

30, RIFLE RIVER WATERSHED

Dam Information and USGS Streamgages


USACE's National Inventory of Dams (NID)			
NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00015	Charlyle Dam	-84.050000	44.058330
MI02579	Flowage Lake Dam	-84.205560	44.263890
MI00282	Devoe Lake Dam	-84.036670	44.400000
MI00284	Mansfield Club Dam	-84.026660	44.168330
MI00287	Heintz Lake Dam	-84.258330	44.315000
MI00290	Sanback Dam	-84.118330	44.425000
MI00291	Engle Pond Dam	-84.185000	44.321670
MI00292	Weiler Dam No 1	-84.208340	44.310000
MI00296	Lake Ogemaw Dam	-84.058330	44.245000
MI00298	Fisk Dam	-84.206670	44.276670
MI00304	Rose Valley Gun Club Dam	-84.060000	44.450000
MI00437	Forest Lake Dam	-84.058330	44.121670
MI00459	Fawn Lake Dam	-84.050000	44.256670
MI01086	HANCHET POND	-83.958300	44.101700

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4139000	HOUGHTON CREEK NEAR LUPTON, MI	-84.047219	44.395851	
4139500	RIFLE RIVER AT THE RANCH NEAR LUPTON, MI	-84.038330	44.393351	
4140000	PRIOR CREEK NEAR SELKIRK, MI	-84.068331	44.335018	
4140500	RIFLE RIVER AT STATE ROAD AT SELKIRK, MI	-84.069441	44.313352	
4141000	SOUTH BRANCH SHEPARDS CREEK NEAR SELKIRK, MI	-84.086942	44.307796	
4142000	RIFLE RIVER NEAR STERLING, MI	-84.019994	44.072520	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950



All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

	A A		
Category	Area	Percentage	
Category	km²	%	
Dune sand	2.79	0.28%	
End moraines of coarse-textured till	13.16	1.33%	
End moraines of fine-textured till	223.35	22.63%	
End marrings of madiums testured till	93.56	9.48%	
End moraines of medium-textured till	59.39	6.02%	
Fine-textured glacial till	00.05	9.12%	
Fine-textured glacial till Glacial outwash sand and gravel and postglacial alluvium	90.05	10.0004	
Fine-textured glacial till Glacial outwash sand and gravel and postglacial alluvium Ice-contact outwash sand and gravel	180.48	18.28%	
Fine-textured glacial till Glacial outwash sand and gravel and postglacial alluvium	1	18.28%	

Lacustrine sand and gravel

Total Watershed Area

Dune sand

31.53%

100.00%

311.21

987.19

End moraines of coarse-textured till

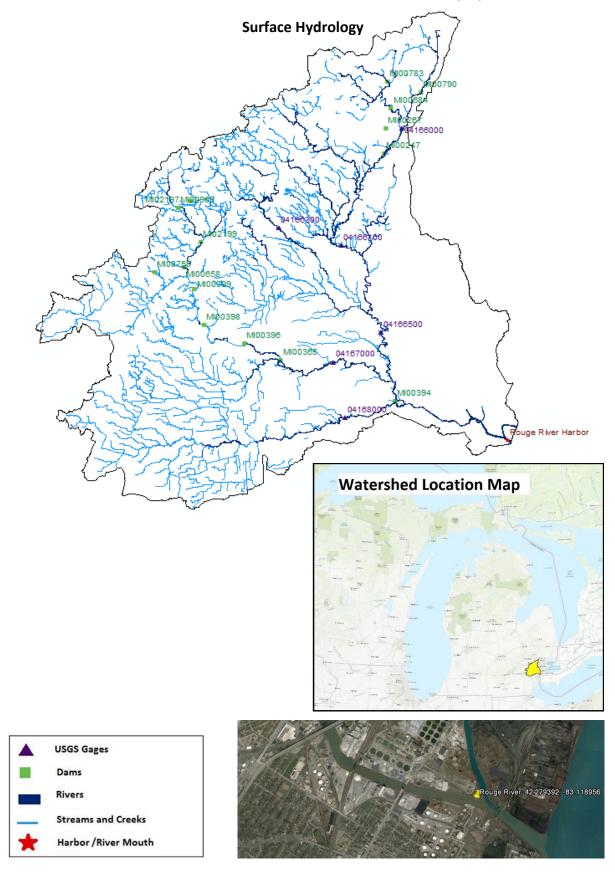
- End moraines of fine-textured till
- End moraines of medium-textured till
- Fine-textured glacial till

Glacial outwash sand and grave I and postglacial alluvium

- Ice-contact outwash sand and gravel
- Lacustrine clay and silt
- Lacustrine sand and gravel

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

Surficial Geology (Simplified)


■ Clay, Silt, and Muck Silt, Sand, and Gravel Category Area Percentage km² Category % Clay, Silt, and Muck 295.94 29.98% Silt, Sand, and Gravel 691.25 70.02%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

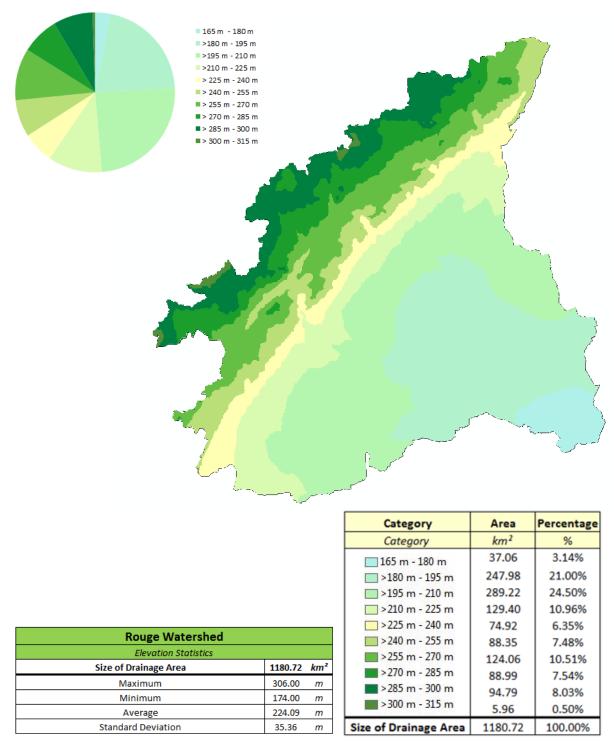
Total Watershed Area

987.19

100.00%

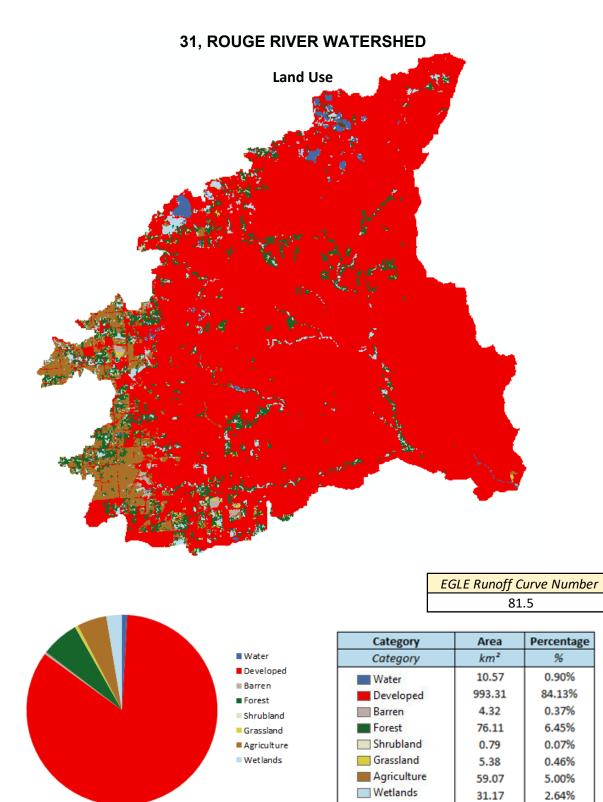
APPENDIX II. ROUGE RIVER WATERSHED (31)

31, ROUGE RIVER WATERSHED


Dam Information and USGS Stream Gages

	USACE's National Inventory of Dams (NID)							
NIDID	Dam Name	Longitude	Latitude					
National ID	Official Name	Decimal Degrees	Decimal Degrees					
MI02197	Taft Road Regional Detention Basin	-83.484730	42.484720					
MI02199	Meadowbrook Lake Dam	-83.459440	42.454170					
MI00247	Erity Dam	-83.245000	42.525000					
MI00267	Quarton Dam	-83.241670	42.546670					
MI00365	Nankin Mill Dam	-83.371670	42.351670					
MI00394	Ford Estate Dam	-83.241670	42.313330					
MI00396	Newburgh Dam	-83.413330	42.366660					
MI00398	Wilcox Dam	-83.458340	42.383340					
MI00399	Waterford Dam	-83.468330	42.415000					
MI00658	Silver Spring Lake Dam	-83.480000	42.433330					
MI00681	Twelve Oaks Mall Dam	-83.470000	42.490000					
MI00684	Endicott Lake Dam	-83.235000	42.563330					
MI00759	Maybury Fish Pond Dam	-83.513340	42.430000					
MI00783	Vhay Lake Dam	-83.238330	42.586670					
MI00790	Green Lake Dam	-83.200000	42.576670					
MI00969	Leavenworth Detention Pond Dam	-83.484730	42.484720					

USGS Stream Gage's								
STA ID	Station Name	Longitude	Latitude	Active				
4166000	RIVER ROUGE AT BIRMINGHAM, MI	-83.223542	42.545868	yes				
4166100	RIVER ROUGE AT SOUTHFIELD, MI	-83.297709	42.447813	yes				
4166300	UPPER RIVER ROUGE AT FARMINGTON, MI	-83.369655	42.464480	yes				
4166500	RIVER ROUGE AT DETROIT, MI	-83.255485	42.372259	yes				
4167000	MIDDLE RIVER ROUGE NEAR GARDEN CITY, MI	-83.311597	42.348093	yes				
4168000	LOWER RIVER ROUGE AT INKSTER, MI	-83.300208	42.300593	yes				
	Number of Active USGS Stream Gage's in Drainag	ge Area (2009)		6				

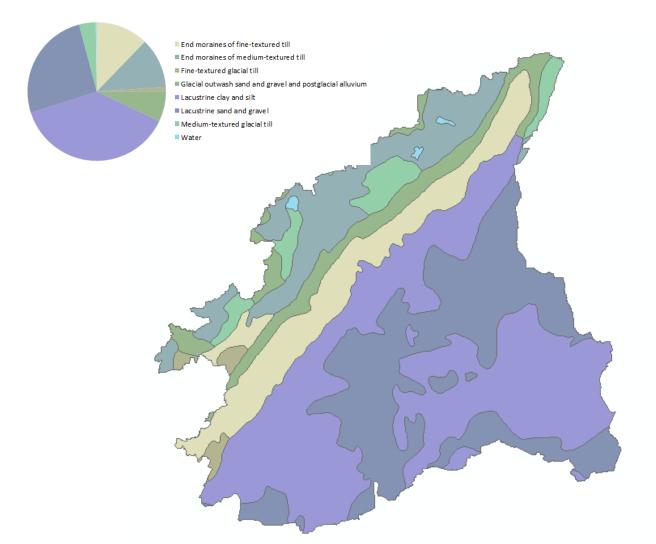

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

31, ROUGE RIVER WATERSHED

Elevation

All Elevation Measurements with Respect to North American Datum 1983

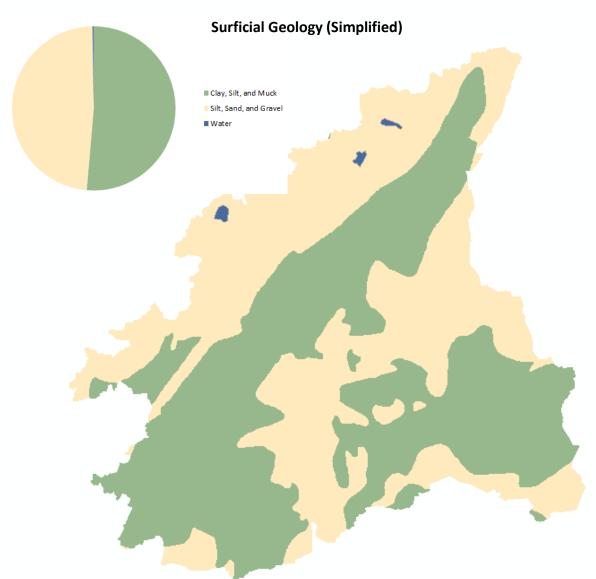
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


Total

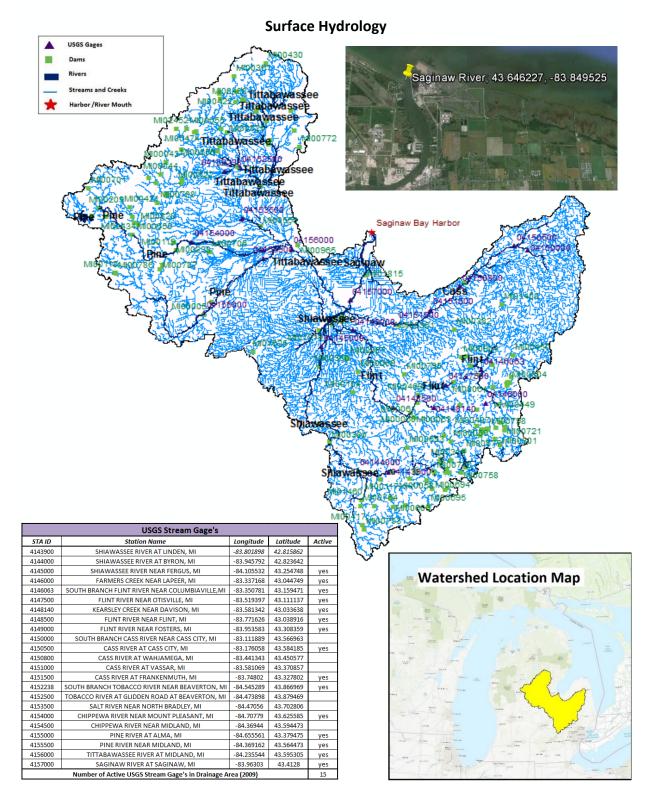
1180.72

100.00%

31, ROUGE RIVER WATERSHED


Surficial Geology

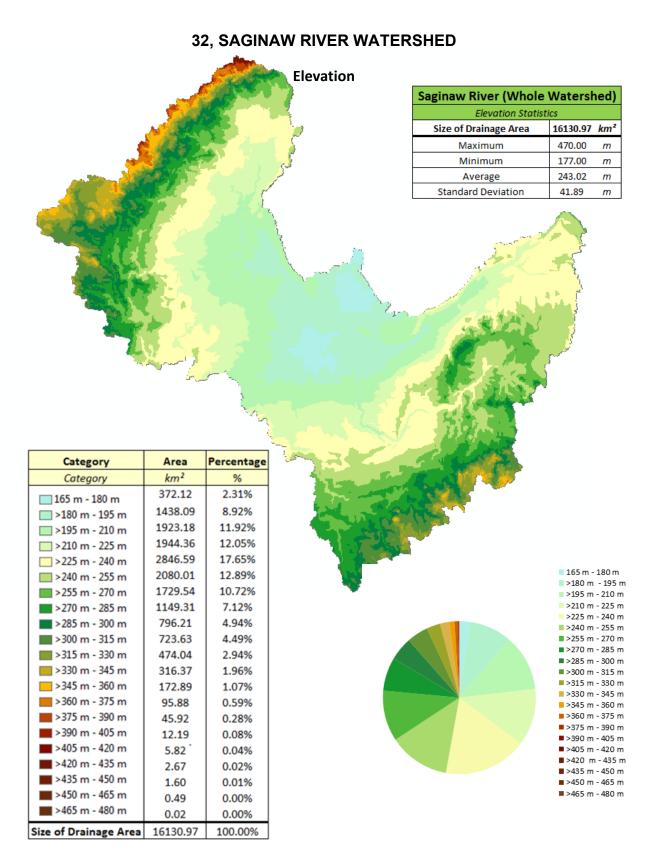
Category	Area	Percentage
Category	km ²	%
End moraines of fine-textured till	144.61	12.25%
End moraines of medium-textured till	138.02	11.69%
Fine-textured glacial till	12.60	1.07%
Glacial outwash sand and gravel and postglacial alluvium	82.58	6.99%
Lacustrine clay and silt	449.50	38.07%
Lacustrine sand and gravel	304.73	25.81%
Medium-textured glacial till	45.73	3.87%
Water	2.95	0.25%
Total Watershed Area	1180.72	100.00%


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

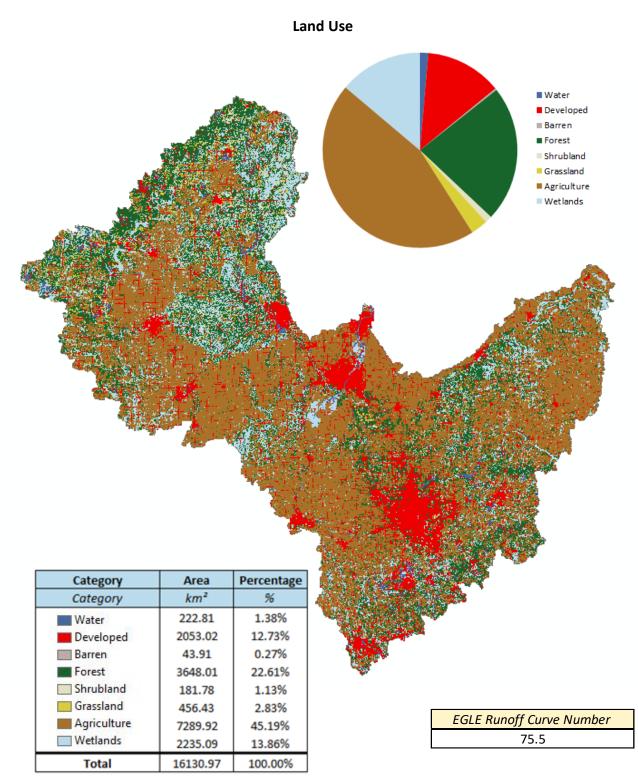
31, ROUGE RIVER WATERSHED

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	606.71	51.38%
Silt, Sand, and Gravel	571.06	48.37%
Water Vater	2.95	0.25%
Total Watershed Area	1180.72	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

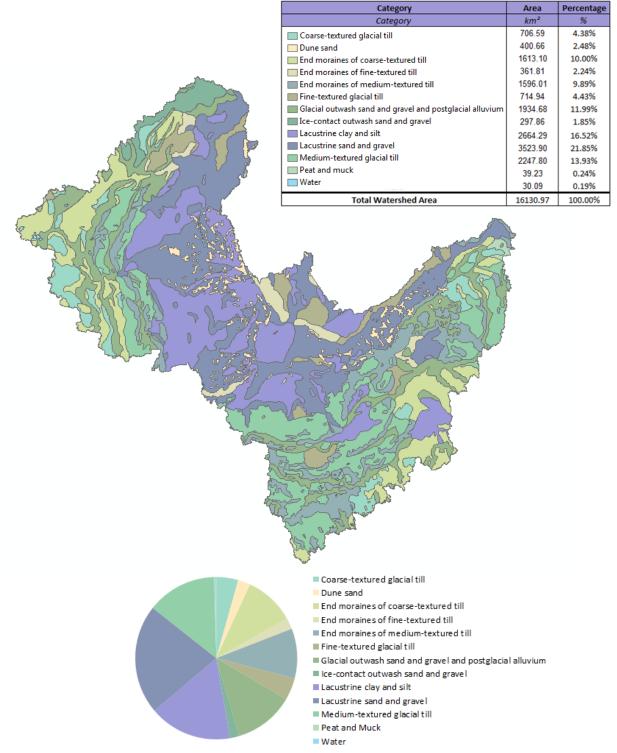

APPENDIX JJ. SAGINAW RIVER WATERSHED (32)

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

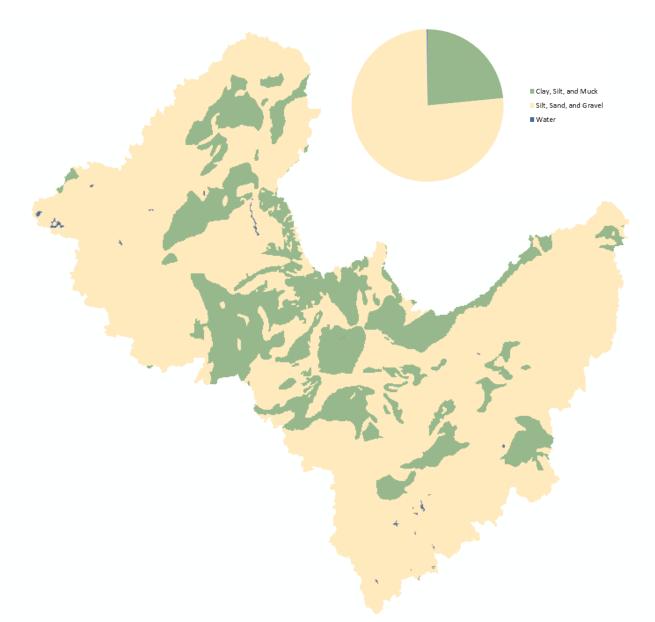

Dam Information

USACE'S National Inventory of Dams (NID)							
NIDID	Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00550	Sanford	-84.380300	43.676900	MI00253	Holly Dam	-83.623340	42.785000
MI00524	Beaverton	-84.483300	43.883300	MI00255	Lake Louise Dam	-83.436670	42.826670
MI00104	Misteguay Creek 2A	-83.958340	43.095000	MI02572	Upper Long Lake Dam	-83.231390	43.102220
MI00549	Edenville	-84.376900	43.814200	MI00264	Perrysville Dam	-83.553340	42.845000
MI00547	Secord	-84.341900	44.041100	MI02641	Hartman & Tyner Mitigation Pond 1	-83.551700	42.856000
MI00548	Smallwood	-84.336100	43.958600	MI00273	Spring Lake Dam	-83.591670	42.818330
MI00551	St Louis	-84.618600	43.416700	MI00276	Wildwood Lake Dam	-83.517780	42.808060
MI00116	Surrey Lake Dam	-84.910550	43.850150	MI00286	Upper Reed Lake Dam	-83.291660	42.958330
MI00117	Argentine Dam	-83.841670	42.791390	MI00293	Misch Lake Dam	-83.266670	42.975000
MI00118 MI00119	Blanchard Pond Dam Harris Dam	-85.075000 -84.783330	43.525000 43.600000	MI00294 MI00295	Hemingway Lake Dam Potters Lake Dam	-83.416660 -83.458340	43.208330 43.041670
MI00119 MI00120	Russell Dam	-84.483330	43.600000	MI00295	Snoblen Dam	-83.366670	42.933330
MI01276	Blue Lake Dam	-84.560550	44.121110	MI00300	Thompson Dam	-83.275000	42.900000
MI00138	Baker Dam	-84.375000	44.085000	MI00307	Faussett Dam	-83.871670	42.700000
MI01400	Shay Lake Level Control Structure	-83.244700	43.384500	MI00314	Phipps Lake Dam	-83.508330	42.850000
MI01420	Barnes Lake Dam	-83.296670	43.176670	MI00323	Springwood Lake #1 Dam	-84.688330	44.006670
MI01423	Lapeer State Game Area Flooding #13 Dam	-83.226670	43.114170	MI00329	Hoister Lake Dam	-84.566670	44.141670
MI01425	Johnson Dam	-83.355000	42.955000	MI00330	Trout Lake Dam	-84.566670	44.138330
MI01460	Hidden Lake Dam	-83.931660	42.721670	MI00351	Priddy Lake Dam	-84.495000	44.196670
MI01587	Twin Lakes Dam	-83.208340	43.133340	MI00359	Sawdel Lake Dam	-83.361660	43.143610
MI01601	Molasses River Flooding #5 Dam	-84.210990	44.005990	MI00360	Chesaning Dam	-84.116670	43.188330
MI01625	Gratiot-Saginaw SGA Impoundment #1 Dam	-84.426670	43.241660	MI00361	Frankenmuth Dam	-83.741670	43.324810
MI01681	McGinnis Lake Dam	-83.527500	42.821110	MI00364	Winchester Dam	-85.183330	43.720000
MI01815	Crow Island Dam	-83.886670	43.500000	MI00378	Byron Dam	-83.941670	42.821670
MI01818	Pool Six Dam Shiawassee Flats Dam	-83.995000	43.348330	MI00379	Corunna Dam Shiawassee Town Dam	-84.120000	42.986670 42.928330
MI01819 MI01974	Nepessing Lake Level Control Structure	-84.113330 -83.376660	43.311670 43.025000	MI00380 MI00381	Caro Dam	-84.076670 -83.416660	43.461670
MI01374 MI00201	Lake Contos Dam	-84.558330	44.016670	MI00381	Murphy Lake Level Control Structure	-83.471660	43.303330
MI00201	Heil Dam	-84.325000	43.975000	MI00039	Beebe Lake Dam	-84.752160	43.947210
MI00209	Barryton Dam	-85.146670	43.746670	MI00404	Lockwood Lake Dam	-83.246670	42.961670
MI00221	Peas Lake Dam	-84.850000	43.550000	MI00407	Lake Metamora Dam	-83.333340	42.958330
MI00230	Mission Creek Dam	-84.793330	43.625000	MI00041	Farwell Mill Pond Dam	-84.874600	43.831910
MI00244	Davisburg Dam	-83.538330	42.751670	MI00411	Walker Creek Dam #1	-84.991670	43.716670
MI02452	Sutherland Lake Level Control Struct	-84.775000	44.018330	MI00414	Kerswill Lake Dam	-84.564770	43.956270
MI02474	Hamlin Dam	-84.828330	43.793330	MI00417	Serene Lake Dam	-83.931660	42.636670
MI02497	Thread Creek Impoundment Dam	-83.555000	42.857780	MI00421	Walker Creek Dam #2	-85.000000	43.750000
MI00422	Lake Lochbrae Dam	-84.488330	44.106670	MI00063	Thread Lake Dam	-83.675000	43.003330
MI00425	Lake Lapeer Lake Level Control Structure	-83.380000	42.966670	MI00064	Holloway Dam	-83.485000	43.120000
MI00426	Duncan Dam	-84.825000	43.788330	MI00643	Pool One A	-83.998340	43.358330
MI00043	McKays Dam	-84.825000	43.903330	MI00644	Pool One B Dam	-83.996670	43.353330
MI00430	Morris Lake Dam	-84.340000	44.240000	MI00645	Pool Two	-84.035000	43.350000
MI00432	Big Seven Lake Dam	-83.679600	42.819510	MI00646	Pool Three	-84.006670	43.346670
MI00433 MI00434	Younglove Dam Lake Isabella Dam	-83.295000 -84.991390	42.921670 43.653330	MI00647 MI00648	Pool Four Langshwager Tract Pool Five	-84.050000 -84.000000	43.333330 43.340000
MI00434	Lake 13 Dam	-84.851670	43.861670	MI00648	Burroughs Reservoir Dam	-83.711940	42.900000
MI000448	Seven Lakes Addition Dam	-83.669930	42.816970	MI00655	Weidman Development Dam	-84.980000	43.696670
MI00449	Winn Lake Dam	-83.280000	43.038330	MI00656	Scottish Hills Lake Dam	-84.578320	43.938330
MI00450	Bottom Creek Dam	-83.200500	43.205900	MI00050	Misteguay Creek 4	-83.978330	43.211670
MI00463	Georgia John Farms Dam	-85.116670	43.716670	MI00068	Molasses River Flooding #2 Dam	-84.225000	44.075000
MI00466	James Bicknell III Dam	-84.750000	43.841670	MI00069	Misteguay Creek 3A	-83.933330	43.165000
MI00469	Mott Dam	-83.652410	43.080260	MI00692	Heron Dam	-83.530750	42.811040
MI00471	Lake Lancer Dam	-84.445000	44.113330	MI00693	Davisburg Trout Pond Dam	-83.524720	42.754440
MI00474	Springwood #2 Dam	-84.680000	44.008340	MI00694	Braemar Lake Dam	-83.597550	42.755600
MI00488	Lake Lancelot Dam	-84.455000	44.116660	MI00695	Knoblock Lake Dam	-83.618330	42.696670
MI00005	State Street Dam	-84.658330	43.375000	MI00697	Lapeer State Game Area Flooding #30 Dam	-83.231390	43.111670
MI00525	Chappel Dam	-84.529800	44.003440	MI00701	Siebecker Dam	-85.196660	43.816670
MI00055	Sand Lake Level Control Dam	-84.723340	44.018330	MI00706	Lake Camelot Dam	-84.625000	43.591670
MI00556	Flat Rock Dam	-83.296190	43.099890	MI00721	Beaver Lake Dam	-83.250000	42.950000
MI00057	Atlas Dam	-83.533330	42.938330	MI00753	Thompson Lake Dam	-83.923330	42.620000
MI00576 MI00577	Minnawanna Dam Spain-Lindsey Dam	-83.352500 -83.445000	42.945560 42.883340	MI00754 MI00758	Oak Grove Millpond Dam Renchik Dam	-83.936670 -83.460000	42.701670 42.808330
MI00577 MI00058	Fenton Water Dam	-83.703330	42.885540	MI00758 MI00772	Molasses River Flooding #3 Dam	-83.460000	43.948330
MI00581	Tau Beta Dam	-83.400000	43.175000	MI00772 MI00776	Crystal Lake Dam	-84.186670	42.808890
MI00582	Lower Long Lake Dam	-83.233330	43.108330	MI00785	Frayer Dam	-84.388340	44.073330
MI00059	Goodrich Dam	-83.503330	42.916670	MI00786	Babcocks Pond Dam	-85.071660	43.519720
MI00060	Hamilton Dam	-83.690000	43.020000	MI00787	Schafer Dam	-84.861660	43.533330
MI00600	Tyrone Dam	-83.728390	42.700790	MI00788	Thompson Dam	-84.868330	43.763330
MI00603	Parshallville Dam	-83.785000	42.695000	MI00795	Lewis Drain Dam	-83.713330	43.153330
MI00061	Kearsley Dam	-83.656670	43.055000	MI00798	Merritt Lake Dam	-83.326670	42.955000
MI00062	Linden Mill Dam	-83.781670	42.815000	MI00804	Lapeer State Game Area Flooding #27 Dam	-83.220560	43.111110
MI00621	Shannon Lake Dam	-83.795000	42.725000	MI00820	Weidman Mill Pond Dam	-84.963060	43.688610
MI00622	Shamrock Lake Dam	-84.752940	43.830410	MI00904	Henson Dam	-83.443890	43.207500
				MI00965	Midland Storage Basin	-84.203300	43.607400

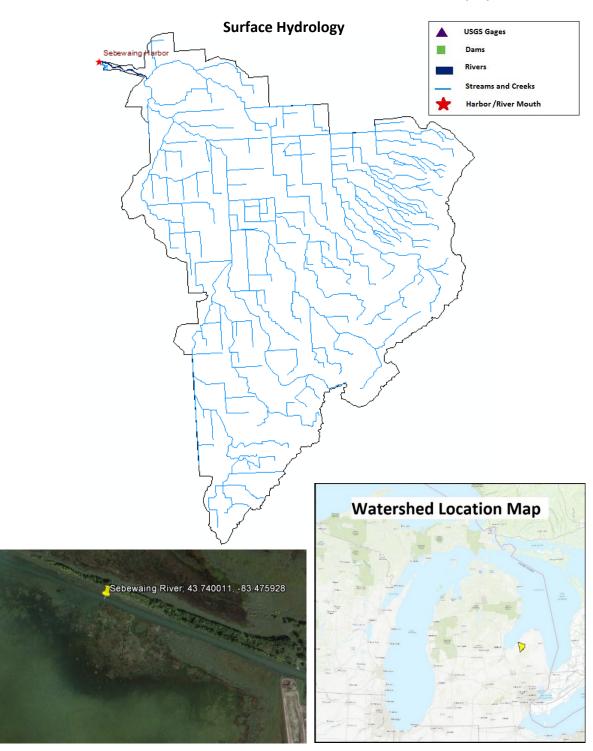
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950



All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

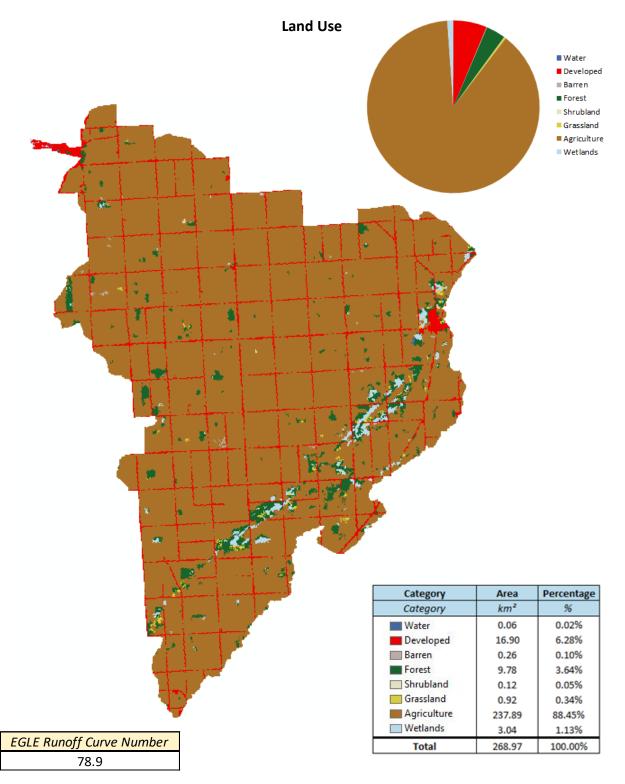
Surficial Geology


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

Surficial Geology (Simplified)

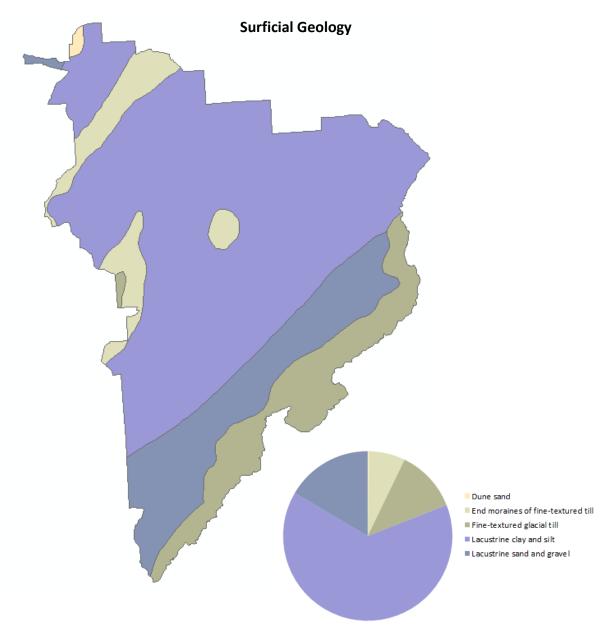
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	3780.28	23.43%
Silt, Sand, and Gravel	12320.60	76.38%
Water	30.09	0.19%
Total Watershed Area	16130.97	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources


APPENDIX KK. SEBEWAING RIVER WATERSHED (33)

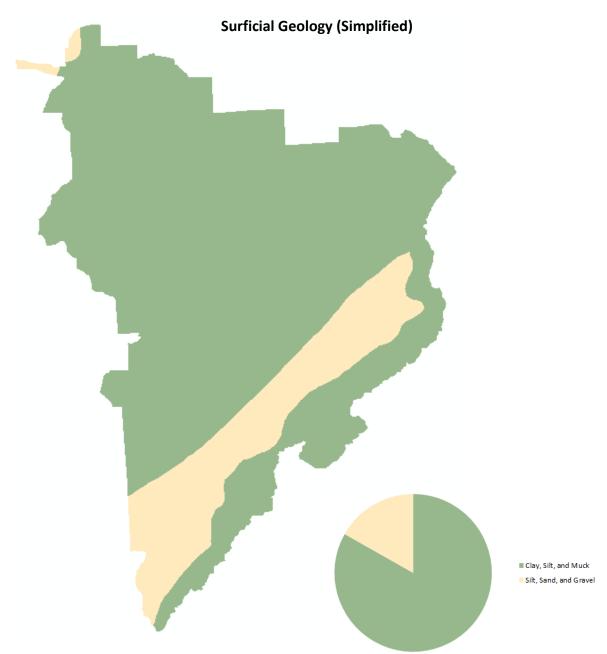
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

			Category	Area	Percentage
			Category	km²	%
Sebewaing Watershed			165 m - 180 m	19.67	7.31%
Elevation Statistics			🔲 >180 m - 195 m	132.79	49.37%
Size of Drainage Area	268.97	km²	🔲 >195 m - 210 m	51.57	19.17%
Maximum	244.00	m	<mark>>210 m - 225 m</mark>	39.94	14.85%
Minimum	177.00	m	<u>>225 m - 240 m</u>	22.87	8.50%
Average	197.03	m	── >240 m - 255 m	2.13	0.79%
Standard Deviation	16.35	m	Size of Drainage Area	268.97	100.00%


All Elevation Measurements with Respect to North American Datum 1983

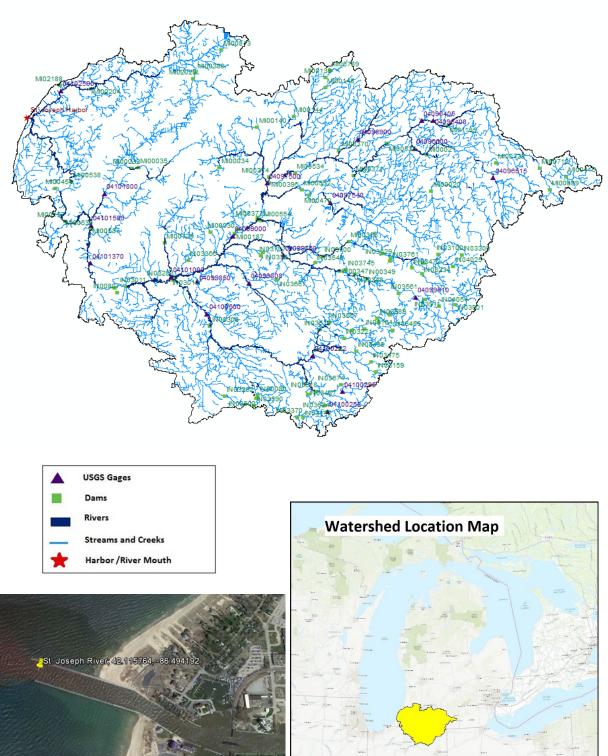
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

362


33, SEBEWAING RIVER WATERSHED

33, SEBEWAING RIVER WATERSHED

Category	Area	Percentage
Category	km ²	%
Dune sand	0.72	0.27%
End moraines of fine-textured till	18.61	6.92%
Fine-textured glacial till	31.95	11.88%
Lacustrine clay and silt	173.21	64.40%
Lacustrine sand and gravel	44.49	16.54%
Total Watershed Area	268.97	100.00%


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

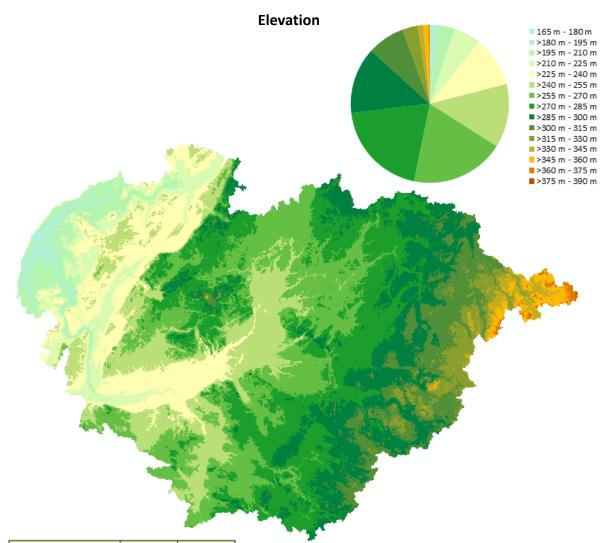
CategoryAreaPercentageCategorykm²%Clay, Silt, and Muck223.7683.19%Silt, Sand, and Gravel45.2116.81%Total Watershed Area268.97100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

33, SEBEWAING RIVER WATERSHED

APPENDIX LL. ST. JOSEPH RIVER WATERSHED (34)

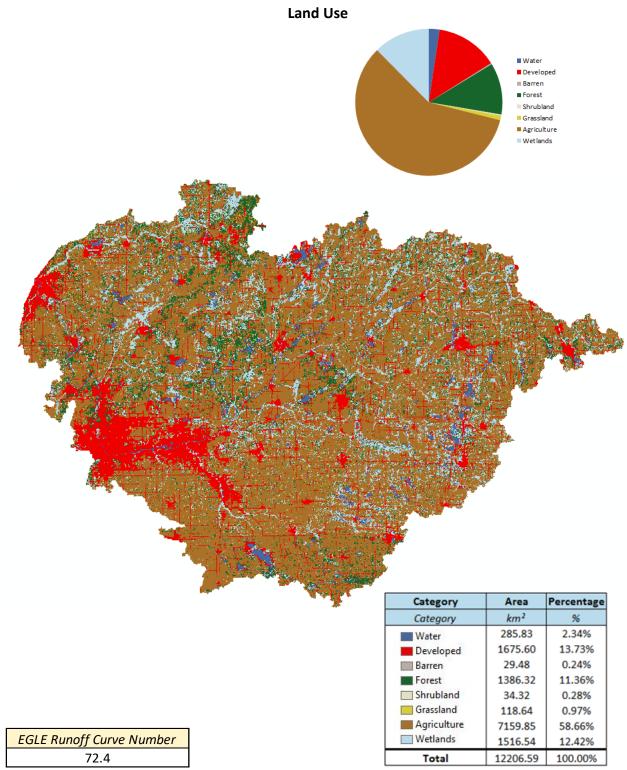
Surface Hydrology


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

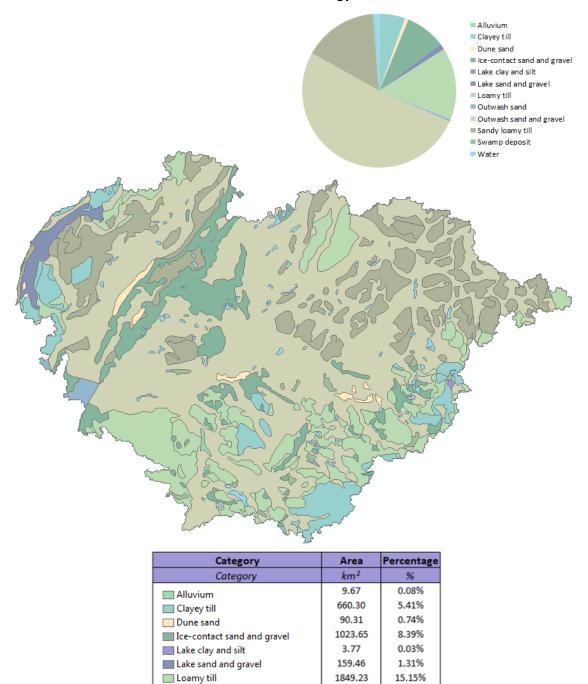
Dam Information and USGS Streamgages

Dam Name		USACE's National Inventory of Dams (NID) UDATES National Inventory of Dams (NID) Dam Name Longitude Latitude NIDID Dam Name Longitude Lati								
Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude				
Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees				
PAPAKEECHIE LAKE	-85.670000	41.375550	IN03759	WALDRON LAKE (WEST LAKES) CONTROL STRUCTURE	-85.457220	41.497780				
GOSHEN POND DAM	-85.836660	41,560830	IN03761	VALL LAKE CONTROL STRUCTURE	-85,197220	41,731940				
ONTARIO MILLPOND DAM	-85.375830	41.706390	IN03901	GORDON T. ANDERSON EARTHEN DAM	-84.968330	41.613060				
NASBY LAKE DAM	-85.322780	41.695830	IN03911	SILVER LAKE CONTROL STRUCTURE	-85.075000	41.629170				
MONGO RESERVOIR DAM	-85,280000	41.685000	IN04025	MINIFENOKEE LAKE DAM	-84.973610	41.715000				
SYLVAN LAKE DAM	-85.376660	41,498330	IN04054	THOMAS PAPAIK LAKE DAM	-85.025000	41.609440				
FLATBELLY LAKE DAM	-85.673890	41.368330	MI00187	Mottville	-85,748300	41,806700				
LAKE BARBARA DAM	-85.432500	41.348890	MI00157	Buchanan	-86.351200	41.839100				
GREENFIELD MILLS DAM	-85,223610	41.750830	MI00534	Sturgis	-85,533300	41,966700				
JIMMERSON LAKE DAM	-85.081940		MI00537	Niles	-86,259200	41.818100				
	-86,176940		MI00535			41.850000				
	-86.166700		MI01135			42.088330				
						41.941700				
						42.220000				
						42.089880				
						42.118330				
						42,194190				
						41.916670				
						42.218330				
						42,191670				
						42.013330				
						42.200000				
						41.811670				
						41.981670				
						41,983330				
						41.983330				
						41,783330				
						41.818330				
						42.025000				
						41,958330				
						41.843330				
						41.956670				
						42.235000				
						41.950000				
						41.926670				
						41.908330				
						42.043330				
						41.818330				
						41,945000				
						41.921670				
						41.841670				
						41.973330				
						41.988330				
						41.988330				
						41.783330				
						42.238330				
						42.294720				
			171100089	milisgale Milipong Dam	-69.625210	91.315150				
	PAPAKECHIE LAKE GOSHER POIND DAM ONTARIO MILLPOND DAM MASSIY LAKE DAM MONGO RESERVOR DAM SYLVAN LAKE DAM FLATELLY LAKE DAM LAKE BARBARA DAM GREENFIELD MILS DAM	PAPAKEECHE LAKE 486 57000 GOSHEN FOND DAM 485 37830 ONTARIO MILLFOND DAM 485 37830 NASEY LAKE DAM 485 37830 MONGO FESERVOIR DAM 485 37860 SYLVAL DAM 485 37860 SYLVAL DAM 485 37860 FLATELLY LAKE DAM 485 37860 LAKE BARBARA DAM 485 37860 LAKE BARBARA DAM 485 42200 GREENFEID MILLS DAM 485 42200 GREENFEID MILLS DAM 485 42200 JIMMERSON LAKE DAM 485 081940 BALL BAND DAM (IN-CHANNEL) 481 1700 South Bend 481 18700 Eikhart 485 18700 Eikhart 485 18700 BIG TONG LAKE CONTROL STRUCTURE 485 18390 BEAR LAKE CONTROL STRUCTURE 485 18390 BIG LONG LAKE CONTROL STRUCTURE 485 18940 BIG LONG LAKE CONTROL STRUCTURE 485 28100 BIG LONG LAKE CONTROL STRUCTURE 485 18940 BIG TONG LAKE CONTROL STRUCTURE 485 28100 CRIPFEY LAKE CONTROL STRUCTURE 485 28100 CRIPFEY THY DAM </td <td>PAPAKEECHE LAKE 96 57000 4137550 GOSHEN FOND DAM 98 53680 4156930 ONTARIO MILLPOND DAM 95 37850 41706390 NASEY LAKE DAM 95 37850 41706390 MOND RESERVCIR DAM 95 37850 41706390 SYLVAN LAKE DAM 95 570860 41489330 FLATBELLY LAKE DAM 95 570860 41489330 LAKE BARBARA DAM 95 572860 4138330 LAKE BARBARA DAM 95 6573860 4138330 LAKE BARBARA DAM 45 622000 41348930 JIMMERSON LAKE DAM 45 622360 4138330 BALL BAND DAM (INC-HANNEL) 46 6778840 41725000 BALL BAND DAM (INC-HANNEL) 46 6778940 41585300 BALL BAND DAM (INC-HANNEL) 46 6778940 41585000 BALA BARD DAM (INC-HANNEL) 46 6778940 41585000 BALA DAKE CONTROL STRUCTURE 45 519200 4131970 ADAMS LAKE CONTROL STRUCTURE 45 241390 41458300 BIG TURG LAKE CONTROL STRUCTURE 45 241590 4158950 BIG LONG LAKE CONTROL STRUCTURE</td> <td>PAPAKECHELAKE -05.67000 41377550 IN03751 GOHEN FOND DAM -95.39860 4150830 IN03751 ONTARIO MILLPOND DAM -85.378503 4170830 IN03751 MASEY LAKE DAM -85.378503 41.085301 IN03911 MONGO RESERVCIR DAM -85.22780 41.885303 IN04025 SYLVAN LAKE DAM -85.23800 41.384330 IN04025 SYLVAN LAKE DAM -85.432500 41.384330 IN04045 FLATBELLY LAKE DAM -85.432500 41.384330 IN00167 GREEMFIELD MILLS DAM -85.432500 41.364330 M00057 JUMMERSON LAKE DAM -85.618940 41.750830 M00057 BALL BAND DAM (INC-HANNEL) -86.175900 41.653330 M00057 BALLAND DAM (INC-HANNEL) -86.17900 41.658330 M00057 BALLAND CAM (INC-HANNEL) -85.17900 41.658330 M00057 BALLAR CONTROL STRUCTURE -95.519200 41.98130 M00013 LONG BEACH LAKE DAM -95.245830 41.54530 M00023 BIG T</td> <td>PAPAKECHE LAKE 43.57000 41.37550 IN03781 VALDACLVES (VESTLAKES) (CONTFOL STRUCTURE GORDANT ANIO DAM 00TARIE ONLIPON DAM 45.375830 41.06380 IN03781 VALLAKE CONTFOL STRUCTURE 0NTARIE ONLIPON DAM 45.375830 41.06380 IN03911 SILVER LAKE CONTFOL STRUCTURE MONGO RESERVOR DAM 45.20000 11.04054 INUERENCE CONTROL STRUCTURE MONGO RESERVOR DAM 45.2000 41.88330 IN04054 THOMAS PARALLEDAM 1.455.200 41.38830 M00167 Buchanan Buchanan ILAKE BARBARA DAM 455.23500 41.38830 M00157 Buchanan GREENFIELD MILLS DAM 455.23500 41.38830 M0057 Nies BALL BAND DAM (IN-CHANNEL) 456.78540 41.68300 M00557 Nies South Bend 456.555300 41.68700 M0055 Constantine LONID BEACH LAKE DAM 456.25830 41.68700 M00153 Constantine LONID BEACH LAKE DAM 456.25830 41.68430 M00140 CeePaceTompany Dam LONID BEACH LAKE DAM <</td> <td>PAPAKECHE LAKE 49.87000 14.37850 IN0375 VALDRULKESI CONTROL STPLICTURE 48.49720 ONTARIO MILPOND DAM 45.37830 11.78530 IN0391 GORDON T. ANDERSONE ARTHEED DAM 44.898330 ONTARIO MILPOND DAM 45.37830 11.78530 IN0391 GVERDN T. ANDERSONE ARTHEED DAM 44.898330 MONGO RESERVOR DAM 45.32780 11.89500 IN04025 MINHE CONTROL ETAKE DAM 44.97830 MONGO RESERVOR DAM 45.37880 14.89500 IN04025 MINHE CONTROL ETAKE DAM 45.97880 SULVANL AKE DAM 45.37880 14.19880 IN00167 MONE 45.97880 ORFERED MLLE DAM 45.37880 14.19880 M00017 MONE 45.97830 JIMMERSON LAKE DAM 45.99140 14.125000 M00035 Constantine 45.85730 South Bend 36.8700 14.155000 M00035 Constantine 45.85730 South Bend 36.85700 41.856700 M00035 Constantine 45.82780 LOB BEACHLAKE DAM 45.95720 41.956700 M00035 <t< td=""></t<></td>	PAPAKEECHE LAKE 96 57000 4137550 GOSHEN FOND DAM 98 53680 4156930 ONTARIO MILLPOND DAM 95 37850 41706390 NASEY LAKE DAM 95 37850 41706390 MOND RESERVCIR DAM 95 37850 41706390 SYLVAN LAKE DAM 95 570860 41489330 FLATBELLY LAKE DAM 95 570860 41489330 LAKE BARBARA DAM 95 572860 4138330 LAKE BARBARA DAM 95 6573860 4138330 LAKE BARBARA DAM 45 622000 41348930 JIMMERSON LAKE DAM 45 622360 4138330 BALL BAND DAM (INC-HANNEL) 46 6778840 41725000 BALL BAND DAM (INC-HANNEL) 46 6778940 41585300 BALL BAND DAM (INC-HANNEL) 46 6778940 41585000 BALA BARD DAM (INC-HANNEL) 46 6778940 41585000 BALA DAKE CONTROL STRUCTURE 45 519200 4131970 ADAMS LAKE CONTROL STRUCTURE 45 241390 41458300 BIG TURG LAKE CONTROL STRUCTURE 45 241590 4158950 BIG LONG LAKE CONTROL STRUCTURE	PAPAKECHELAKE -05.67000 41377550 IN03751 GOHEN FOND DAM -95.39860 4150830 IN03751 ONTARIO MILLPOND DAM -85.378503 4170830 IN03751 MASEY LAKE DAM -85.378503 41.085301 IN03911 MONGO RESERVCIR DAM -85.22780 41.885303 IN04025 SYLVAN LAKE DAM -85.23800 41.384330 IN04025 SYLVAN LAKE DAM -85.432500 41.384330 IN04045 FLATBELLY LAKE DAM -85.432500 41.384330 IN00167 GREEMFIELD MILLS DAM -85.432500 41.364330 M00057 JUMMERSON LAKE DAM -85.618940 41.750830 M00057 BALL BAND DAM (INC-HANNEL) -86.175900 41.653330 M00057 BALLAND DAM (INC-HANNEL) -86.17900 41.658330 M00057 BALLAND CAM (INC-HANNEL) -85.17900 41.658330 M00057 BALLAR CONTROL STRUCTURE -95.519200 41.98130 M00013 LONG BEACH LAKE DAM -95.245830 41.54530 M00023 BIG T	PAPAKECHE LAKE 43.57000 41.37550 IN03781 VALDACLVES (VESTLAKES) (CONTFOL STRUCTURE GORDANT ANIO DAM 00TARIE ONLIPON DAM 45.375830 41.06380 IN03781 VALLAKE CONTFOL STRUCTURE 0NTARIE ONLIPON DAM 45.375830 41.06380 IN03911 SILVER LAKE CONTFOL STRUCTURE MONGO RESERVOR DAM 45.20000 11.04054 INUERENCE CONTROL STRUCTURE MONGO RESERVOR DAM 45.2000 41.88330 IN04054 THOMAS PARALLEDAM 1.455.200 41.38830 M00167 Buchanan Buchanan ILAKE BARBARA DAM 455.23500 41.38830 M00157 Buchanan GREENFIELD MILLS DAM 455.23500 41.38830 M0057 Nies BALL BAND DAM (IN-CHANNEL) 456.78540 41.68300 M00557 Nies South Bend 456.555300 41.68700 M0055 Constantine LONID BEACH LAKE DAM 456.25830 41.68700 M00153 Constantine LONID BEACH LAKE DAM 456.25830 41.68430 M00140 CeePaceTompany Dam LONID BEACH LAKE DAM <	PAPAKECHE LAKE 49.87000 14.37850 IN0375 VALDRULKESI CONTROL STPLICTURE 48.49720 ONTARIO MILPOND DAM 45.37830 11.78530 IN0391 GORDON T. ANDERSONE ARTHEED DAM 44.898330 ONTARIO MILPOND DAM 45.37830 11.78530 IN0391 GVERDN T. ANDERSONE ARTHEED DAM 44.898330 MONGO RESERVOR DAM 45.32780 11.89500 IN04025 MINHE CONTROL ETAKE DAM 44.97830 MONGO RESERVOR DAM 45.37880 14.89500 IN04025 MINHE CONTROL ETAKE DAM 45.97880 SULVANL AKE DAM 45.37880 14.19880 IN00167 MONE 45.97880 ORFERED MLLE DAM 45.37880 14.19880 M00017 MONE 45.97830 JIMMERSON LAKE DAM 45.99140 14.125000 M00035 Constantine 45.85730 South Bend 36.8700 14.155000 M00035 Constantine 45.85730 South Bend 36.85700 41.856700 M00035 Constantine 45.82780 LOB BEACHLAKE DAM 45.95720 41.956700 M00035 <t< td=""></t<>				

USGS Stream Gage's							
STA ID	Station Name	Longitude	Latitude	Active			
4096400	ST. JOSEPH RIVER NEAR BURLINGTON, MI	-85.040252	42.102824				
4096405	ST. JOSEPH RIVER AT BURLINGTON, MI	-85.079976	42.103101	yes			
4096515	SOUTH BRANCH HOG CREEK NEAR ALLEN, MI	-84.82774	41.948659	yes			
4096600	COLDWATER RIVER NEAR HODUNK, MI	-85.106918	42.029214				
4096900	NOTTAWA CREEK NEAR ATHENS, MI	-85.308318	42.055603				
4097500	ST. JOSEPH RIVER AT THREE RIVERS, MI	-85.632771	41.940326	yes			
4097540	PRAIRIE RIVER NEAR NOTTAWA, MI	-85.409428	41.888383	yes			
4099000	ST. JOSEPH RIVER AT MOTTVILLE, MI	-85.756105	41.800883	yes			
4099510	PIGEON CREEK NR ANGOLA, IND.	-85.109691	41.634495	yes			
4099750	PIGEON RIVER NEAR SCOTT, IN	-85.576375	41.74894	yes			
4099808	LITTLE ELKHART RIVER AT MIDDLEBURY, IND.	-85.700268	41.675328				
4099850	PINE CREEK NEAR ELKHART, IND.	-85.882497	41.681161				
4100222	NB ELKHART RIVER AT COSPERVILLE, IND.	-85.475537	41.481716	yes			
4100252	FORKER CREEK NEAR BURR OAK, IND	-85.423591	41.332826				
4100295	RIMMELL BRANCH NEAR ALBION, IN	-85.370534	41.385327				
4100500	ELKHART RIVER AT GOSHEN, IND.	-85.848606	41.593383	yes			
4101000	ST. JOSEPH RIVER AT ELKHART, IND	-85.975	41.691716	yes			
4101370	JUDAY CREEK NEAR SOUTH BEND, IN	-86.262785	41.728659	yes			
4101500	ST. JOSEPH RIVER AT NILES, MI	-86.259732	41.829214	yes			
4101800	DOWAGIAC RIVER AT SUMNERVILLE, MI	-86.213068	41.91338	yes			
4102500	PAW PAW RIVER AT RIVERSIDE, MI	-86.368357	42.186149	yes			
N	lumber of Active USGS Stream Gage's in Draina	age Area (200	9)	14			


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams

Category	Area	Percentage
Category	km²	%
165 m - 180 m	18.48	0.15%
>180 m - 195 m	188.89	1.55%
>195 m - 210 m	420.66	3.45%
─ >210 m - 225 m	670.41	5.49%
<u>>225 m - 240 m</u>	1261.49	10.33%
🔜 >240 m - 255 m	1593.72	13.06%
>255 m - 270 m	2341.47	19.18%
> 270 m - 285 m	2427.07	19.88%
<mark>■ >285 m - 300 m</mark>	1663.17	13.63%
≥ 300 m - 315 m	937.17	7.68%
≥315 m -330 m	382.47	3.13%
📒 >330 m - 345 m	138.14	1.13%
<mark></mark>	126.45	1.04%
> 360 m - 375 m	35.86	0.29%
== >375 m - 390 m	1.13	0.01%
Size of Drainage Area	12206.59	100.00%


St. Joseph Watershed		
Elevation Statistics		
Size of Drainage Area	12206.59	km²
Maximum	389.00	m
Minimum	176.00	m
Average	266.29	m
Standard Deviation	32.22	m

All Elevation Measurements with Respect to North American Datum 1983

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Surficial Geology

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

54.37

6295.09

1867.31

56.20

137.22

12206.59

0.45%

51.57%

15.30%

0.46%

1.12%

100.00%

Outwash sand

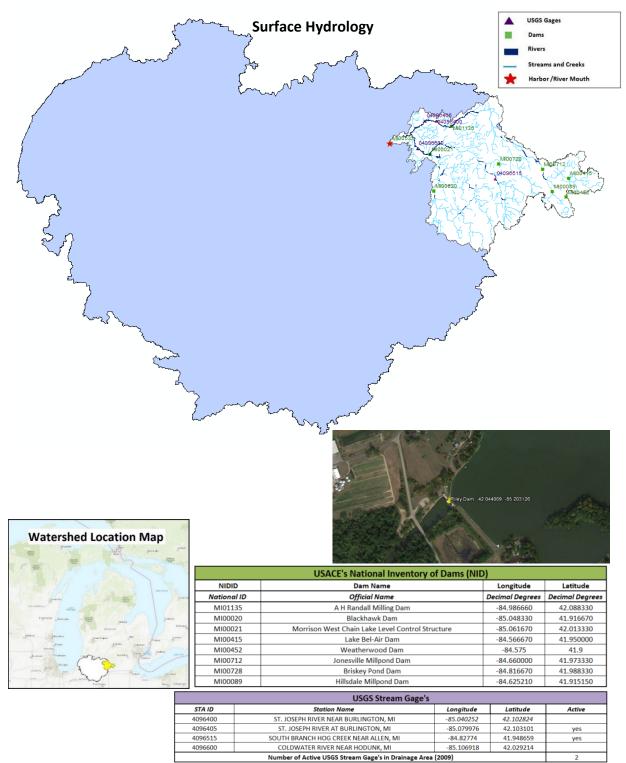
Sandy loamy till

Swamp deposit

Water

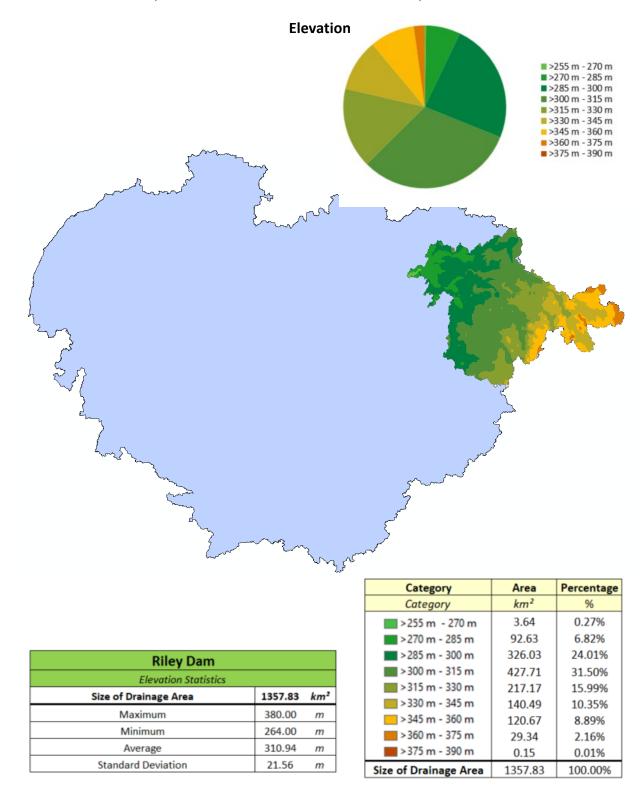
Outwash sand and gravel

Total Watershed Area

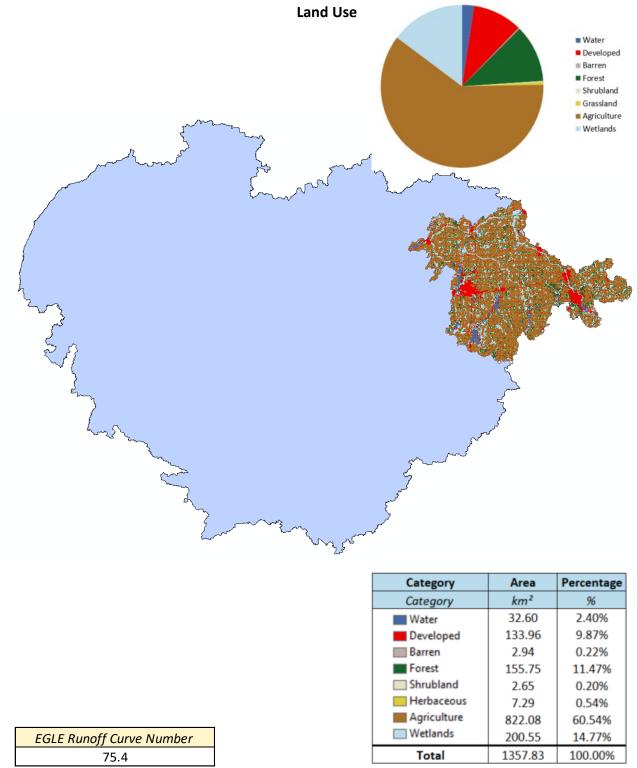

Surficial Geology (Simplified)

Clays, Silts, and Muck
 Silt, Sand, and Gravel

Water

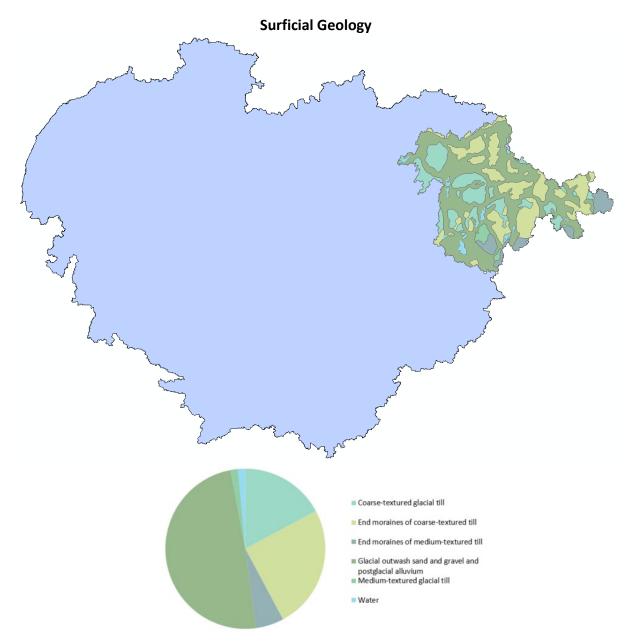

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	720.26	5.90%
Silt, Sand, and Gravel	11349.10	92.98%
Water	137.22	1.12%
Total Watershed Area	12206.59	100.00%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States



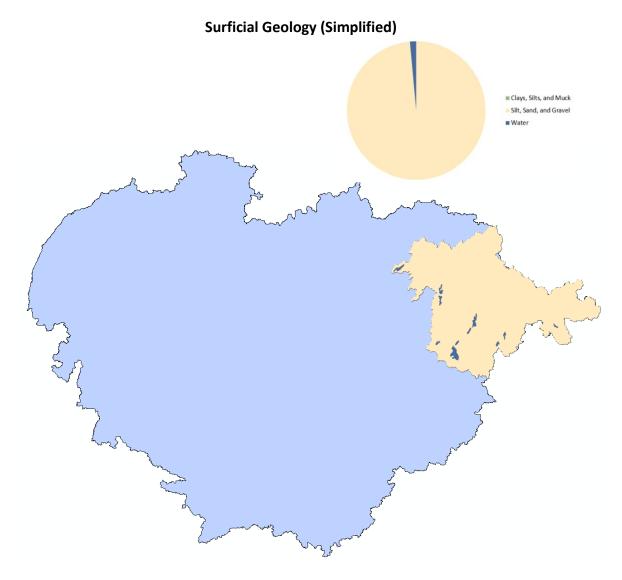
APPENDIX MM. ST. JOSEPH RIVER WATERSHED, RILEY DAM (34A)

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Stream Gages includes only active gages and gages with 20+ years of discharge records since 1950



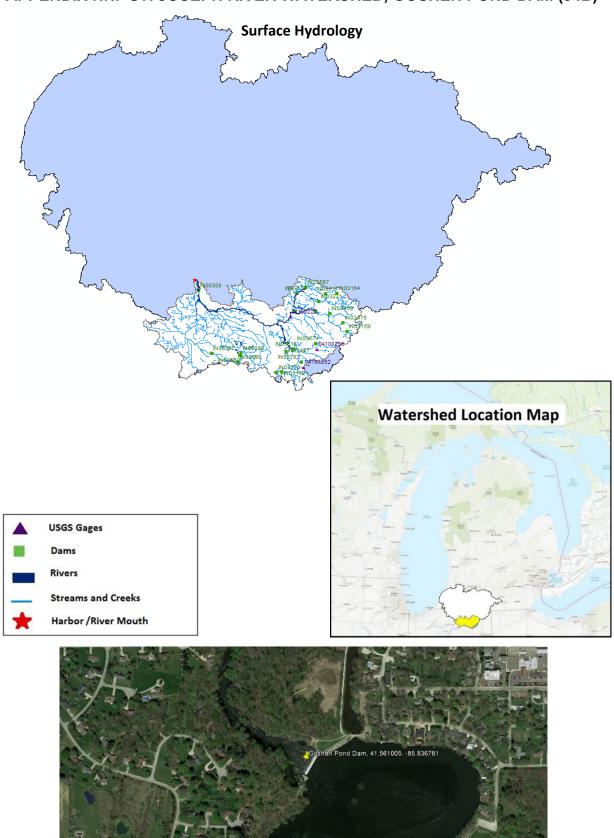
34A, ST. JOSEPH RIVER WATERSHED, RILEY DAM

34A, ST. JOSEPH RIVER WATERSHED, RILEY DAM


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

34A, ST. JOSEPH RIVER WATERSHED, RILEY DAM

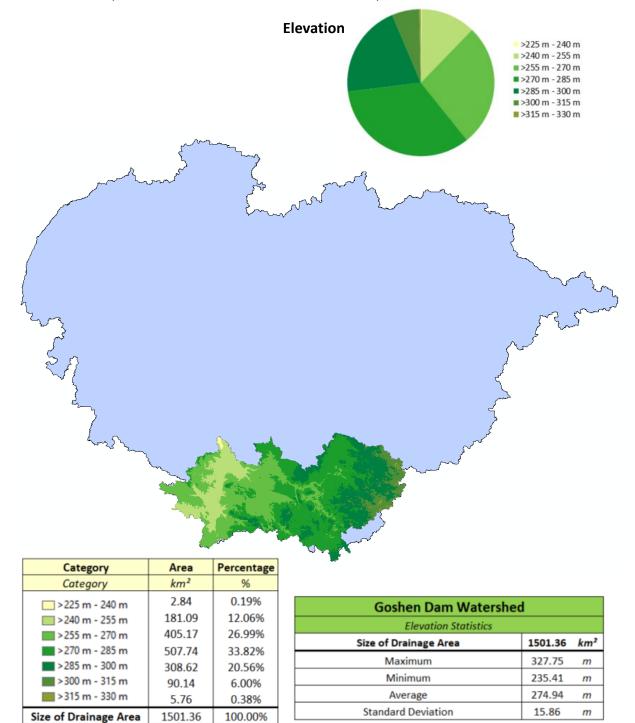
Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	233.70	17.21%
End moraines of coarse-textured till	339.05	24.97%
End moraines of medium-textured till	77.54	5.71%
Glacial outwash sand and gravel and postglacial alluvium	667.14	49.13%
Medium-textured glacial till	20.49	1.51%
Water	19.91	1.47%
Total Watershed Area	1357.83	100.00%


Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

34A, ST. JOSEPH RIVER WATERSHED, RILEY DAM

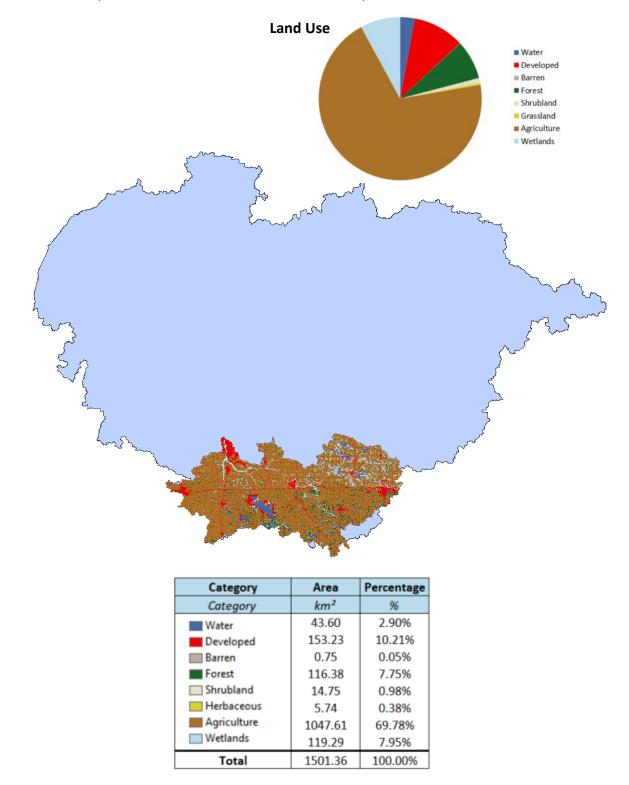
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	0.00	0.00%
Silt, Sand, and Gravel	1337.92	98.53%
Water	19.91	1.47%
Total Watershed Area	1357.83	100.00%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

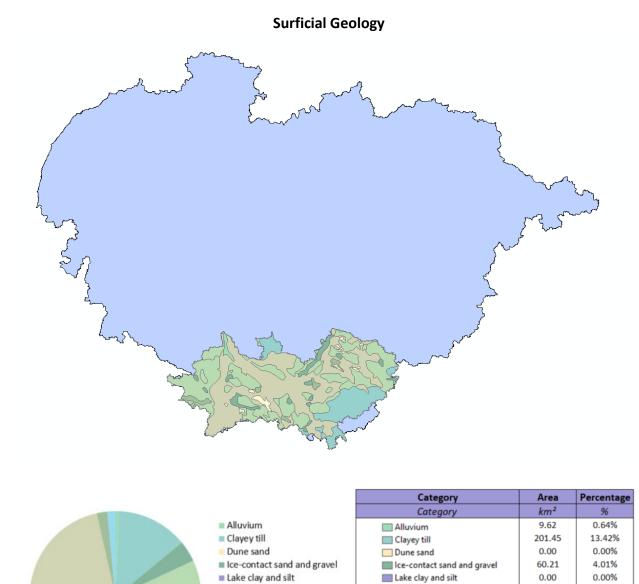

APPENDIX NN. ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM (34B)

34B, ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM

Dam Information and USGS Streamgages


	USACE's National Inventory of Dams (NID)			
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degree	
IN00080	PAPAKEECHIE LAKE	-85.670000	41.375550	
IN00308	GOSHEN POND DAM	-85.836660	41.560830	
IN00383	SYLVAN LAKE DAM	-85.376660	41.498330	
IN00502	FLATBELLY LAKE DAM	-85.673890	41.368330	
IN00787	LAKE BARBARA DAM	-85.432500	41.348890	
IN03117	ADAMS LAKE CONTROL STRUCTURE	-85.336390	41.548330	
IN03142	BEAR LAKE CONTROL STRUCTURE	-85.510280	41.319160	
IN03159	BIXLER LAKE CONTROL STRUCTURE	-85.252780	41.436940	
IN03164	BLACKMAN LAKE CONTROL STRUCTURE	-85.291660	41.550560	
IN03221	CLIFF PETTIT DAM	-85.362780	41.526940	
IN03262	DEWART LAKE CONTROL STRUCTURE	-85.785840	41.374720	
IN03370	HIGH CONTROL STRUCTURE	-85.530560	41.318890	
IN03459	LATTA LAKE CONTROL STRUCTURE	-85.320270	41.491660	
IN03475	LITTLE LONG CONTROL STRUCTURE	-85.268330	41.463330	
IN03487	LOWER LONG LAKE CONTROL STRUCTURE	-85.492500	41.378610	
IN03512	MESSICK LAKE CONTROL STRUCTURE	-85.448050	41.551110	
IN03557	OLIVER LAKE CONTROL STRUCTURE	-85.414720	41.569160	
IN03590	PRICE LAKE	-85.681660	41.349450	
IN03618	RICHARD GRIEGER LAKE DAM	-85.463330	41.386670	
IN03674	SKINNER LAKE CONTROL STRUCTURE	-85.376660	41.403050	
IN03759	WALDRON LAKE (WEST LAKES) CONTROL STRUCTURE	-85.457220	41.497780	

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4100222	NB ELKHART RIVER AT COSPERVILLE, IND.	-85.475537	41.481716	yes
4100252	FORKER CREEK NEAR BURR OAK, IND	-85.423591	41.332826	
4100295	RIMMELL BRANCH NEAR ALBION, IN	-85.370534	41.385327	
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	


34B, ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM

All Elevation Measurements with Respect to North American Datum 1983

34B, ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

34B, ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

Lake sand and gravel

Outwash sand and gravel

Total Watershed Area

🔲 Loamy till

Water

Outwash sand

Sandy loamy till

Swamp deposit

0.00%

36.85%

0.00%

41.56%

0.00%

2.01%

1.51%

100.00%

0.00

553.20

0.00

623.91

0.00

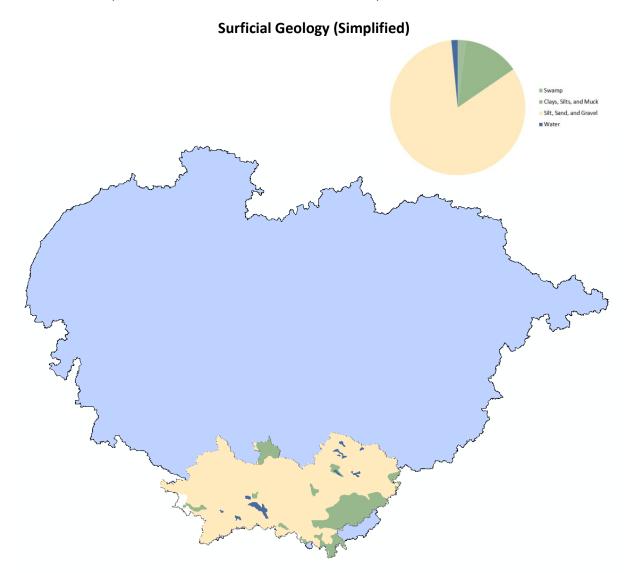
30.24

22.74

1501.36

Lake sand and gravel

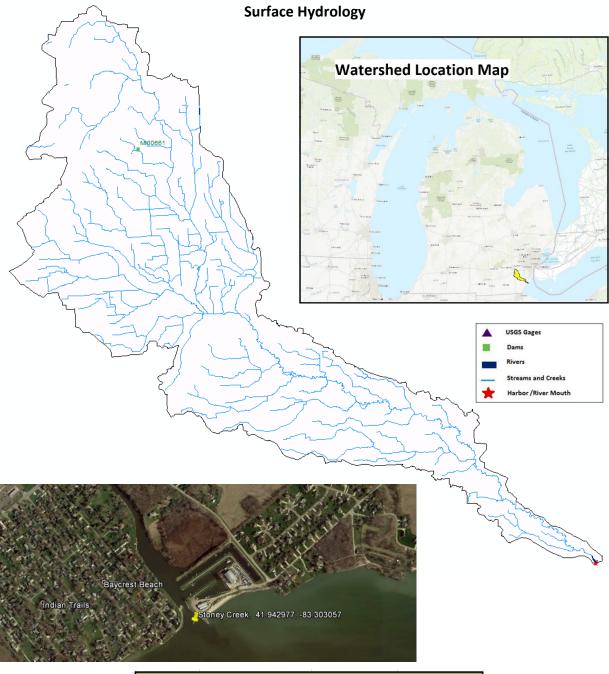
Outwash sand and gravel


Loamy till

Water

Outwash sand

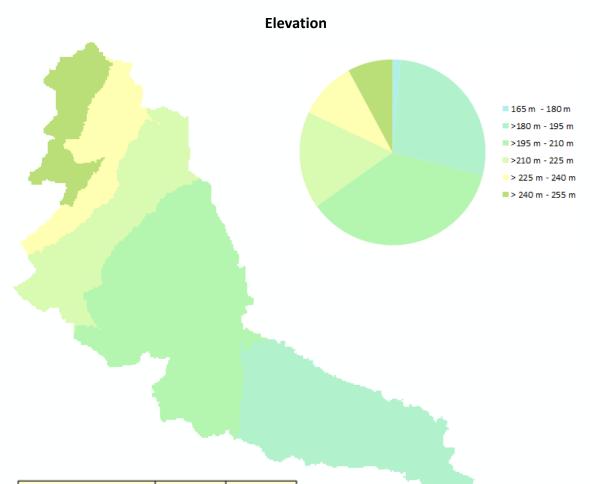
Sandy loamy till


Swamp deposit

34B, ST. JOSEPH RIVER WATERSHED, GOSHEN POND DAM

Category	Area	Percentage
Category	km²	%
Swamp	30.24	2.01%
Clay, Silt, and Muck	201.45	13.42%
Silt, Sand, and Gravel	1246.93	83.05%
Water	22.74	1.51%
Total Watershed Area	1501.36	100.00%

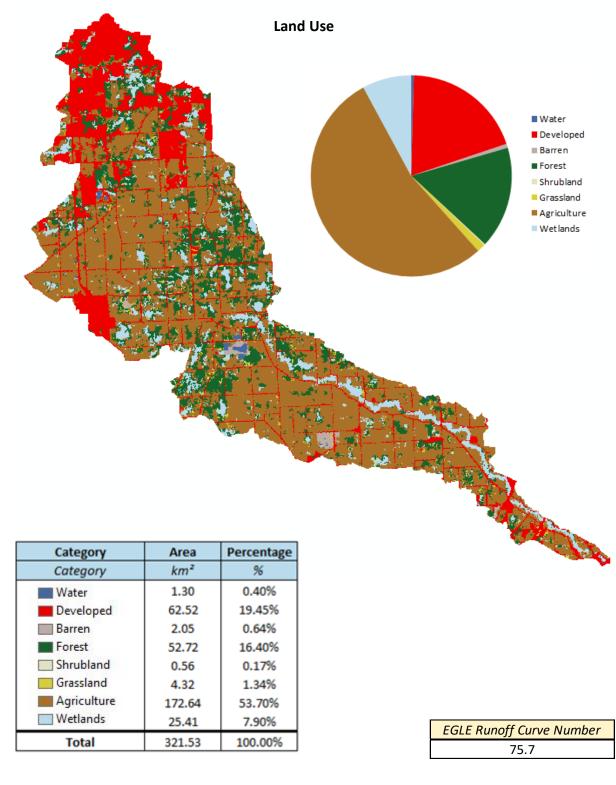
Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

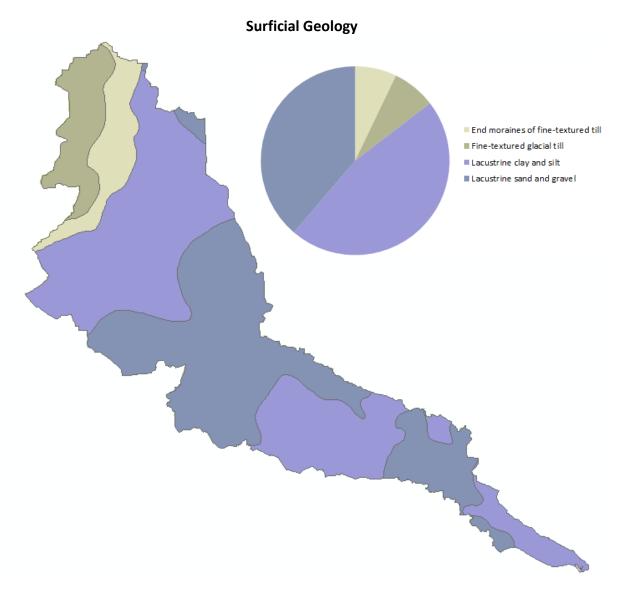


APPENDIX OO. STONY CREEK RIVER WATERSHED (35)

USACE's National Inventory of Dams (NID)					
NIDID Dam Name Longitude Latitude					
National ID Official Name Decimal Degrees Decimal Degre					
MI00661	Charles Sargent Dam	-83.626660	42.175000		

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

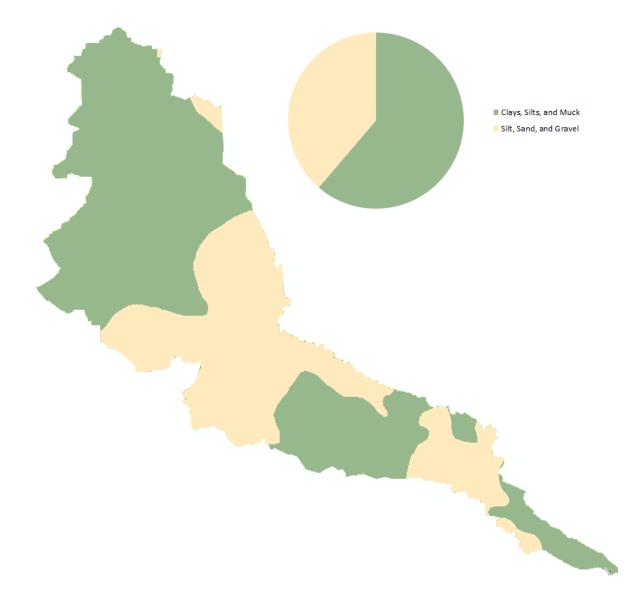

35. STONY CREEK RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	4.56	1.42%
🔜 >180 m - 195 m	88.77	27.61%
📃 >195 m - 210 m	116.12	36.12%
🔁 >210 m - 225 m	54.45	16.93%
<mark> </mark>	32.42	10.08%
🔜 >240 m - 255 m	25.20	7.84%
Size of Drainage Area	321.53	100.00%

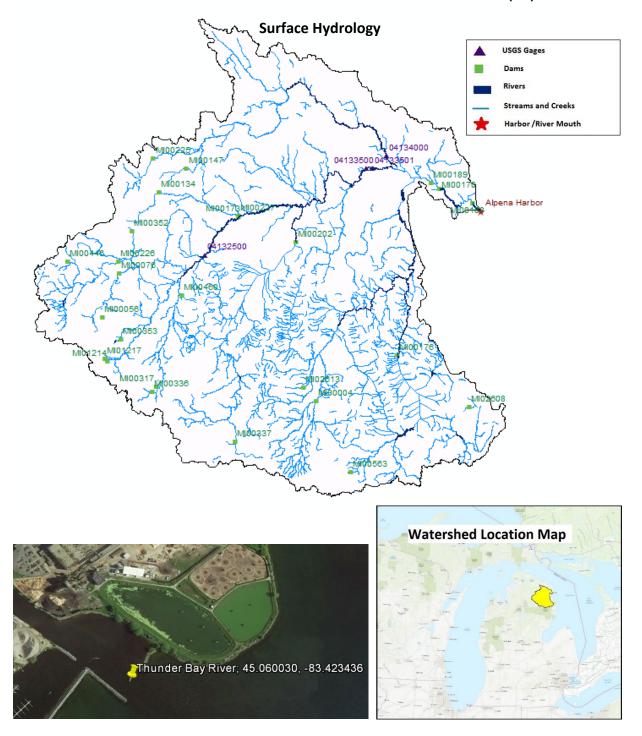
Stony Creek Watershed				
Elevation Statistics				
Size of Drainage Area	321.53	km²		
Maximum	247.00	m		
Minimum	173.00	m		
Average	207.49	m		
Standard Deviation	16.94	m		

All Elevation Measurements with Respect to North American Datum 1983

35, STONY CREEK RIVER WATERSHED



35, STONY CREEK RIVER WATERSHED

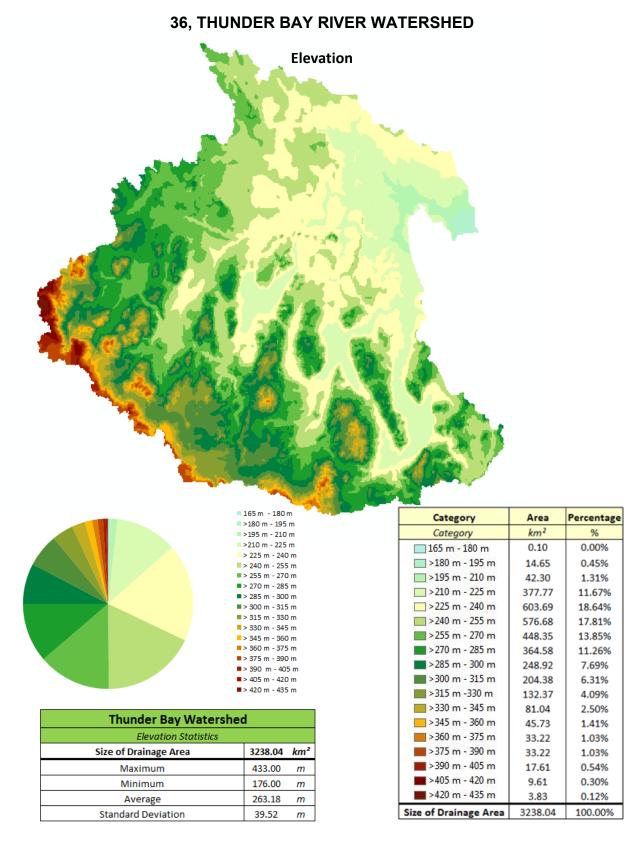

Category	Area	Percentage
Category	km²	%
End moraines of fine-textured till	22.91	7.13%
Fine-textured glacial till	24.04	7.48%
Lacustrine clay and silt	150.05	46.67%
Lacustrine sand and gravel	124.52	38.73%
Total Watershed Area	321.53	100.00%

35, STONY CREEK RIVER WATERSHED

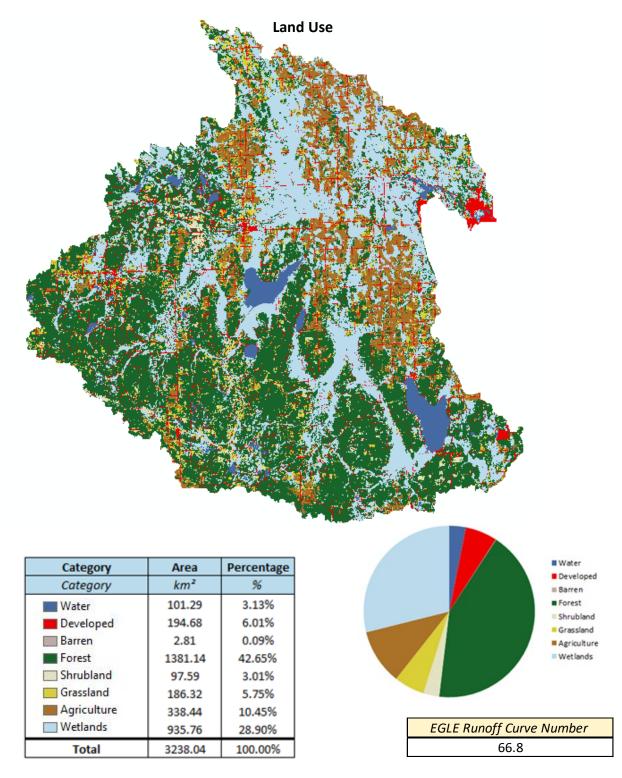
Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	197.00	61.27%
Silt, Sand, and Gravel	124.52	38.73%
Total Watershed Area	321.53	100.00%

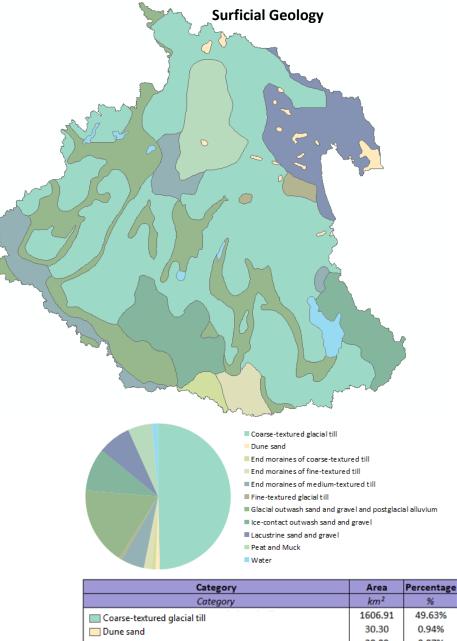
APPENDIX PP. THUNDER BAY RIVER WATERSHED (36)


36, THUNDER BAY RIVER WATERSHED

Dam Information and USGS Streamgages

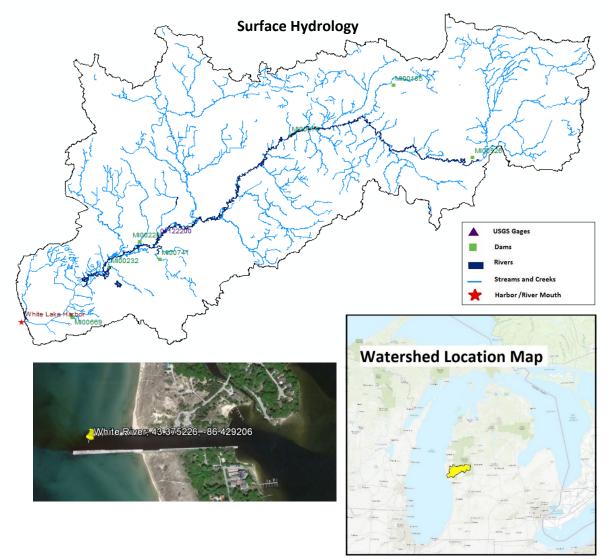

USACE's National Inventory of Dams (NID)			
NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00188	Ninth Street	-83.437100	45.071900
MI00170	Four Mile Dam	-83.502600	45.092700
MI00189	Norway Point	-83.519200	45.101900
MI00202	Upper South Dam	-83.791000	45.024000
MI00173	Hillman	-83.903100	45.061500
MI01214	East Fish Lake Dam	-84.170000	44.863330
MI01217	Fuller Creek Pond Dam	-84.175000	44.866660
MI00134	Upper Hiawatha Dam	-84.060060	45.098750
MI00147	Grass Lake Level Control Structure	-84.005000	45.131670
MI00176	Hubbard Lake Dam	-83.596660	44.860000
MI00225	Rush Lake Level Control Structure	-84.070000	45.146670
MI00226	Atlanta Dam	-84.145000	45.003330
MI00227	Brush Creek Dam	-83.903340	45.063330
MI02608	Lost Lake Woods East Dam	-83.457800	44.785100
MI02613	Birch Creek Club Dam	-83.784400	44.819600
MI00317	Rhoads Dam	-84.075000	44.825000
MI00336	Woodland Dam	-84.083340	44.818330
MI00337	Reed Ranch Dam	-83.921670	44.745000
MI00352	Atlanta Sportsmen Dam	-84.116670	45.045000
MI00353	Sage Lake Dam	-84.143330	44.893330
MI00004	Little Wolf Creek Dam	-83.760000	44.800000
MI00446	Lake Inez Dam	-84.245000	45.005000
MI00460	Robert Slivensky Dam	-84.020000	44.953330
MI00056	Avery Lake Dam	-84.178340	44.925000
MI00563	Bucks Pond Dam	-83.695000	44.698330
MI00076	Crooked Lake Level Control Structure	-84.143330	44.986670

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4132500	THUNDER BAY RIVER NEAR HILLMAN, MI	-83.972498	45.008342	
4133500	THUNDER BAY RIVER NEAR BOLTON, MI	-83.647207	45.124456	
4133501	THUNDER BAY RIVER AT HERRON ROAD NEAR BOLTON, MI	-83.635540	45.124179	yes
4134000	4134000 NORTH BRANCH THUNDER BAY RIVER NR BOLTON, MI -83.605817 45.141679			
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

All Elevation Measurements with Respect to North American Datum 1983

36, THUNDER BAY RIVER WATERSHED

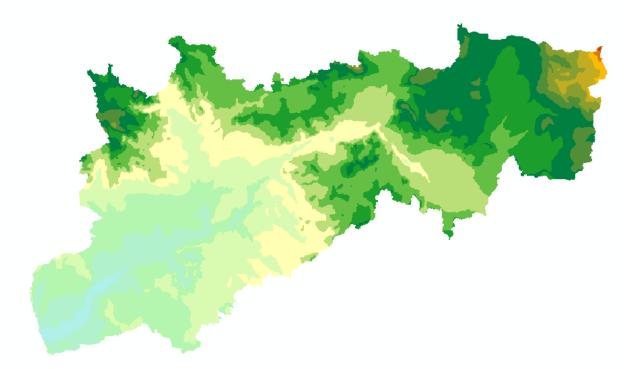

36, THUNDER BAY RIVER WATERSHED

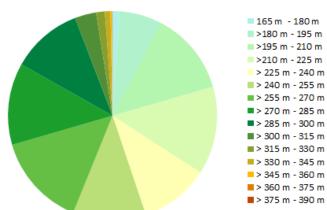
Total Watershed Area	3238.04	100.00%
Water	43.17	1.33%
Peat and muck	175.31	5.41%
Lacustrine sand and gravel	239.97	7.41%
Ice-contact outwash sand and gravel	308.42	9.52%
Glacial outwash sand and gravel and postglacial alluvium	558.81	17.26%
Fine-textured glacial till	23.01	0.71%
End moraines of medium-textured till	167.76	5.18%
End moraines of fine-textured till	56.31	1.74%
End moraines of coarse-textured till	28.08	0.87%
Dune sand	30.30	0.94%

Surficial Geology (Simplified) Clays, Silts, and Muck Silt, Sand, and Gravel Water

36, THUNDER BAY RIVER WATERSHED

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	254.62	7.86%
Silt, Sand, and Gravel	2940.24	90.80%
Water	43.17	1.33%
Total Watershed Area	3238.04	100.00%

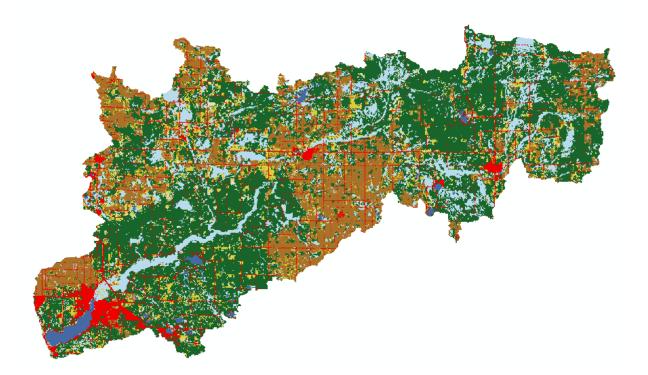

APPENDIX QQ.	WHITE RIVER WATERSHED (37)
--------------	----------------------------


USACE's National Inventory of Dams (NID)				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00185	Minnie Lake Dam	-85.890000	43.626670	
MI00228	Browns Pond Dam	-86.259450	43.460280	
MI00232	Silver Creek Pond Dam	-86.303340	43.433330	
MI00526	White Cloud Dam	-85.775000	43.550000	
MI00669	Whitehall Millpond Dam	-86.356670	43.380000	
MI00678	Hesperia Dam	-86.040680	43.572780	
MI00741	Cleveland Lake Dam	-86.230000	43.441670	

USGS Stream Gage's				
STA ID Station Name Longitude Latitude A				Active
4122200	WHITE RIVER NEAR WHITEHALL, MI	-86.232567	43.464179	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)				1

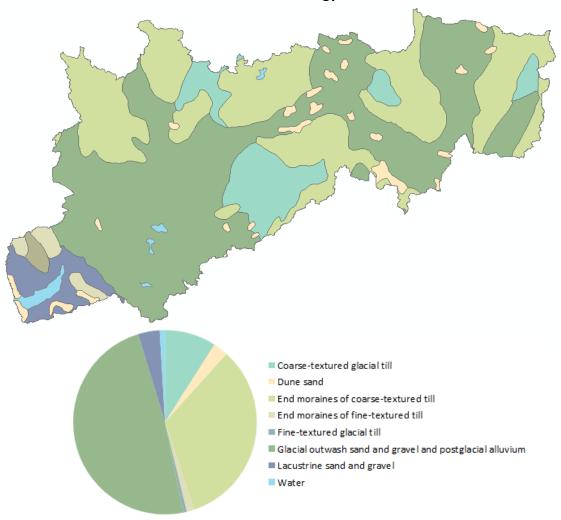
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Elevation

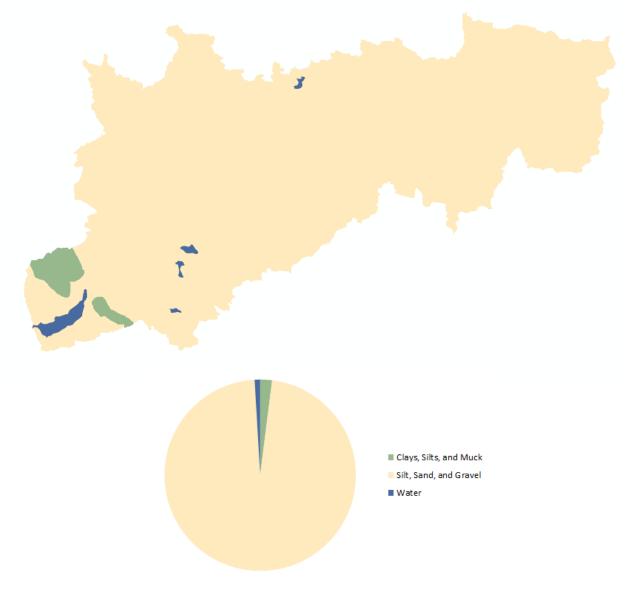

White Watershed		
Elevation Statistics		
Size of Drainage Area	1392.97	km²
Maximum	381.00	m
Minimum	177.00	m
Average	245.18	m
Standard Deviation	36.96	m

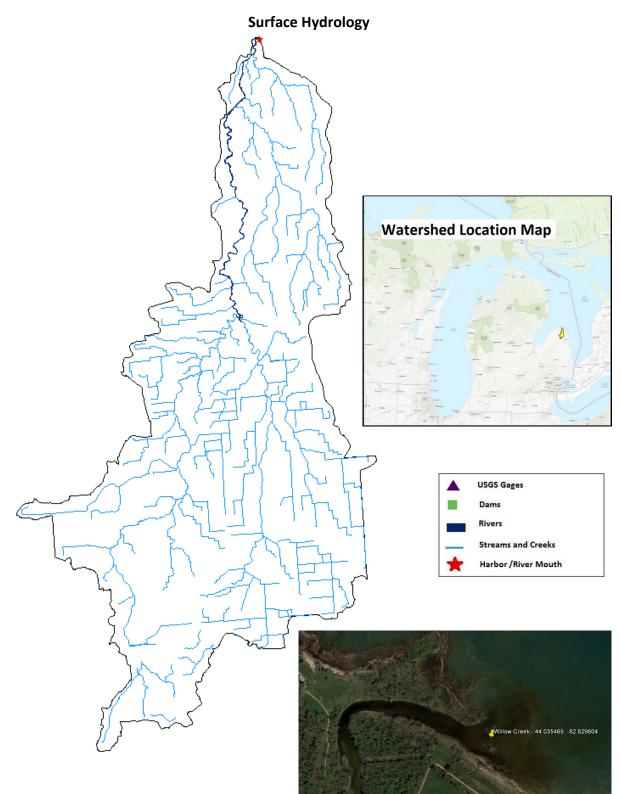
Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	15.40	1.11%
🔲 >180 m - 195 m	91.82	6.59%
🔲 >195 m - 210 m	178.62	12.82%
<u>>210 m - 225 m</u>	189.24	13.59%
<u>>225 m - 240 m</u>	149.41	10.73%
🔜 >240 m - 255 m	157.61	11.31%
>255 m - 270 m	200.12	14.37%
= > 270 m - 285 m	176.24	12.65%
== > 285 m - 300 m	153.34	11.01%
== >300 m - 315 m	45.84	3.29%
≥315 m -330 m	18.80	1.35%
📒 >330 m - 345 m	12.05	0.87%
📒 >345 m - 360 m	3.53	0.25%
📒 > 360 m - 375 m	0.72	0.05%
== >375 m - 390 m	0.23	0.02%
Size of Drainage Area	1392.97	100.00%

All Elevation Measurements with Respect to North American Datum 1983


394

Land Use


	Water Developed Barren Forest Shrubland Grassland Agriculture Wetlands	Category Category Water Developed Barren Forest Shrubland Grassland Agriculture Wetlands Total	Area km ² 18.85 83.35 2.15 771.50 71.72 157.35 125.57 162.49 1392.97	Percentage % 1.35% 5.98% 0.15% 55.39% 5.15% 11.30% 9.01% 11.67% 100.00%
EGLE Runoff Curve Number				
60.6				



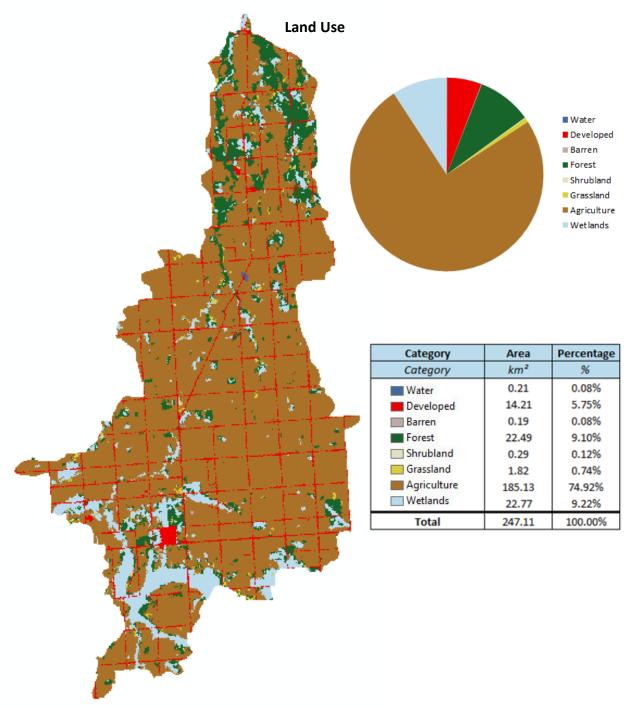
Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	125.97	9.04%
Dune sand	37.04	2.66%
End moraines of coarse-textured till	461.30	33.12%
End moraines of fine-textured till	18.98	1.36%
Fine-textured glacial till	8.86	0.64%
Glacial outwash sand and gravel and postglacial alluvium	675.07	48.46%
Lacustrine sand and gravel	52.78	3.79%
Water	12.98	0.93%
Total Watershed Area	1392.97	100.00%

Surficial Geology (Simplified)

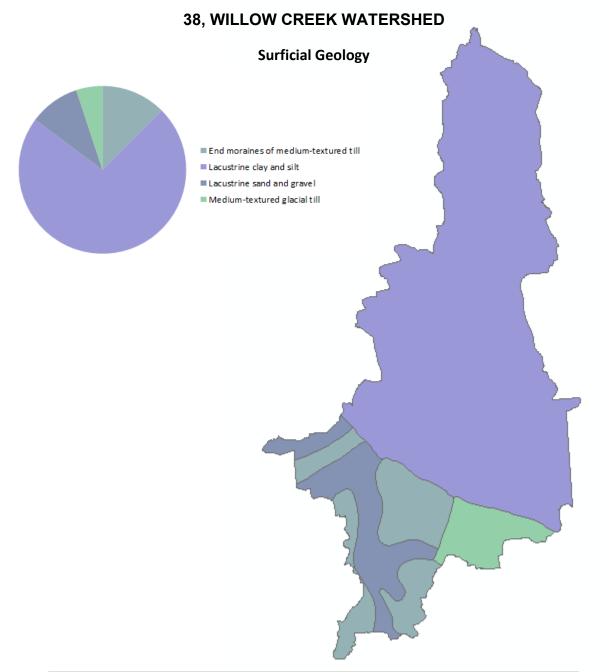
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	27.85	2.00%
Silt, Sand, and Gravel	1352.15	97.07%
Water	12.98	0.93%
Total Watershed Area	1392.97	100.00%

APPENDIX RR. WILLOW CREEK WATERSHED (38)

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

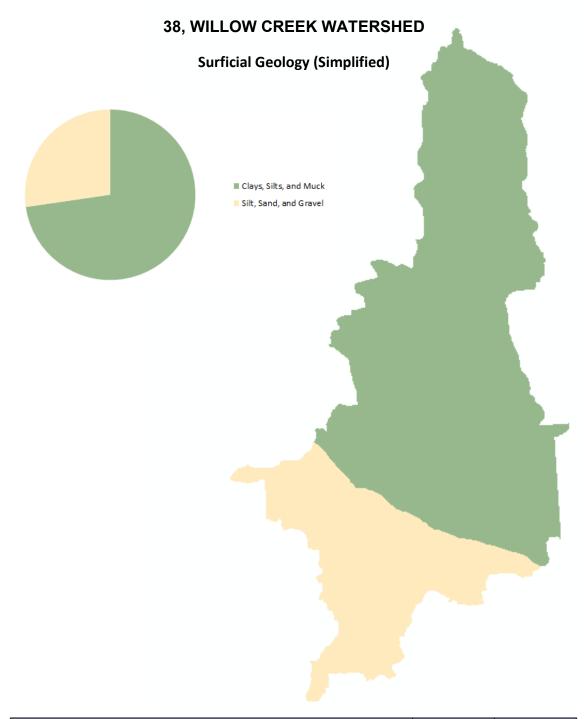

38, WILLOW CREEK WATERSHED

165 m - 180 m
>180 m - 195 m
>195 m - 210 m
>210 m - 225 m
> 225 m - 240 m
> 240 m - 255 m
> 255 m - 270 m


Category	Area	Percentage
Category	km²	%
165 m - 180 m	0.19	0.08%
🔜 >180 m - 195 m	7.64	3.09%
📃 >195 m - 210 m	30.96	12.53%
<u>>210 m - 225 m</u>	116.78	47.26%
<u>>225 m - 240 m</u>	65.90	26.67%
<mark>∭</mark> >240 m - 255 m	22.92	9.27%
≥255 m - 270 m	2.72	1.10%
Size of Drainage Area	247.11	100.00%

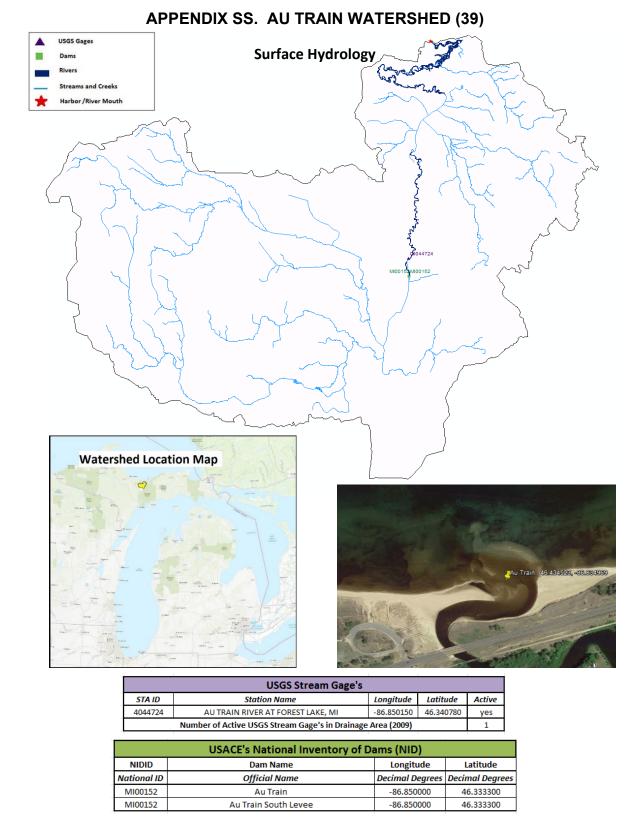
Willow Watershed			
Elevation Statistics			
Size of Drainage Area	247.11	km²	
Maximum	259.00	m	
Minimum	176.00	m	
Average	221.33	m	
Standard Deviation	13.65	m	

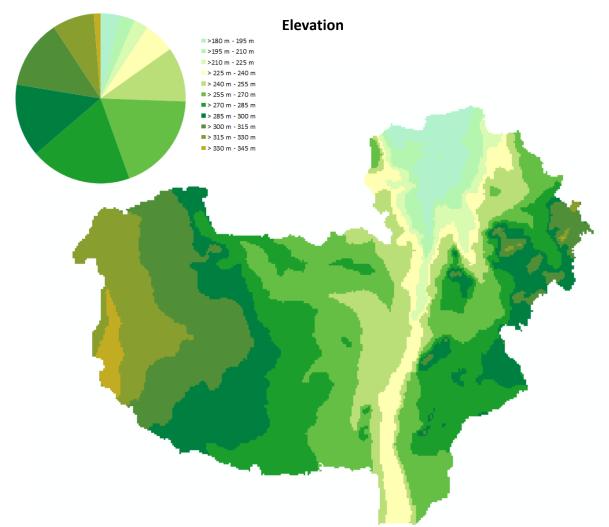
38, WILLOW CREEK WATERSHED


EGLE Runoff Curve Number 79.0

Category	Area	Percentage
Category	km ²	%
End moraines of medium-textured till	30.86	12.49%
Lacustrine clay and silt	179.66	72.70%
Lacustrine sand and gravel	24.04	9.73%
Medium-textured glacial till	12.56	5.08%
Total Watershed Area	247.11	100.00%

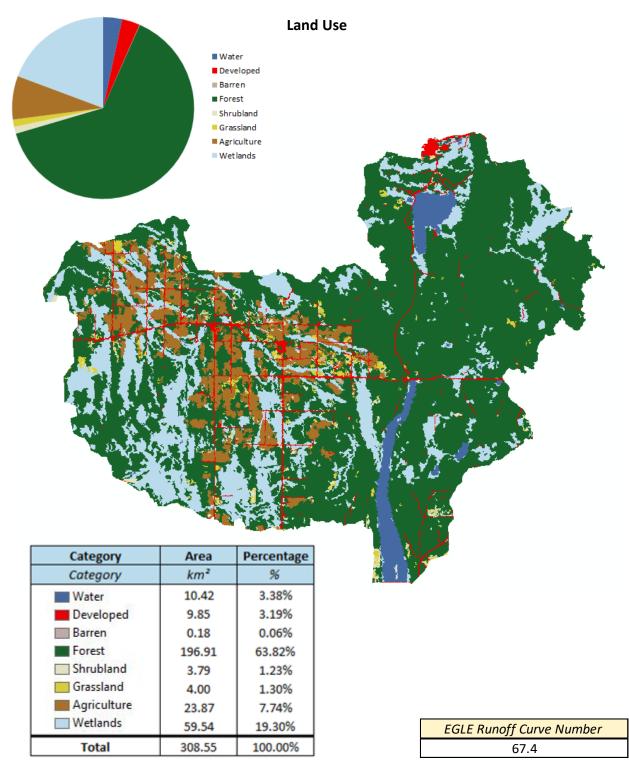
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

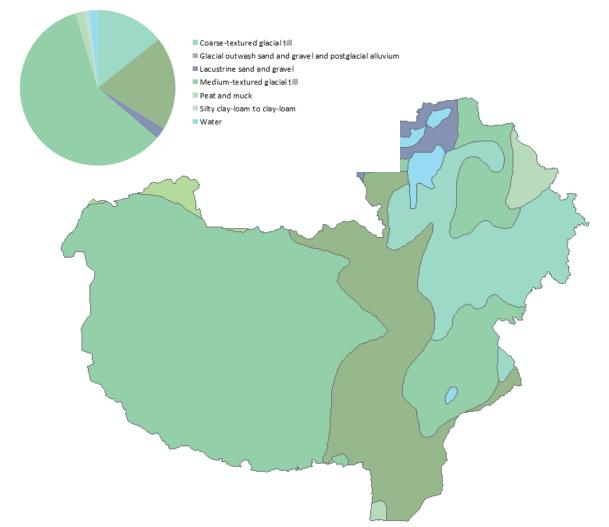

401


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	179.66	72.70%
Silt, Sand, and Gravel	67.45	27.30%
Total Watershed Area	247.11	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

402

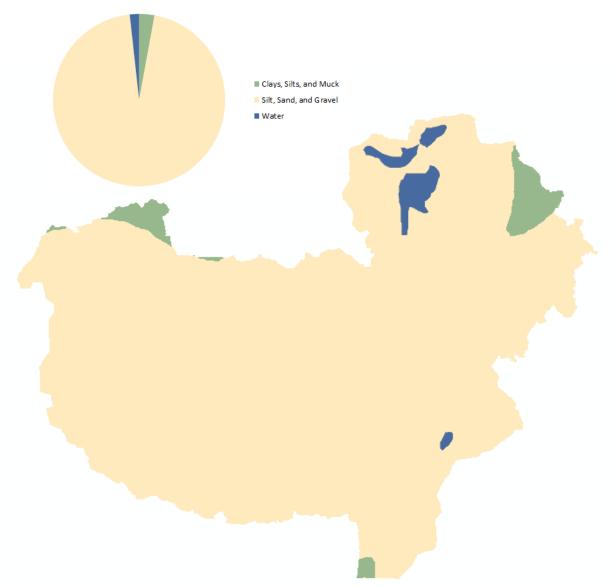

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Category	Area	Percentage
Category	km²	%
🔲 >180 m - 195 m	11.61	3.76%
🔲 >195 m - 210 m	8.47	2.74%
🔲 > 210 m - 225 m	8.49	2.75%
>225 m - 240 m	18.23	5.91%
🔲 >240 m - 255 m	32.15	10.42%
> 255 m - 270 m	58.43	18.94%
= > 270 m - 285 m	59.23	19.20%
E > 285 m - 300 m	42.87	13.89%
>300 m - 315 m	40.54	13.14%
📰 >315 m -330 m	24.52	7.95%
== >330 m - 345 m	4.02	1.30%
Size of Drainage Area	308.55	100.00%

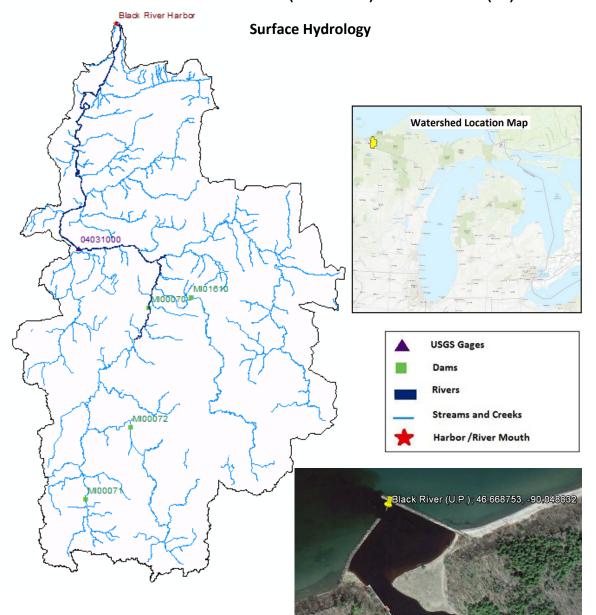
Au Train Watershed		
Elevation Statistics		
Size of Drainage Area	308.55	km²
Maximum	335.00	m
Minimum	185.00	m
Average	271.72	m
Standard Deviation	33.77	m

All Elevation Measurements with Respect to North American Datum 1983

Surficial Geology



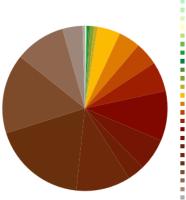
Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	44.16	14.31%
Glacial outwash sand and gravel and postglacial alluvium	60.12	19.49%
Lacustrine sand and gravel	7.31	2.37%
Medium-textured glacial till	182.71	59.22%
Peat and muck	5.81	1.88%
Thin to discontinuous glacial till over bedrock	3.07	1.00%
Water	5.36	1.74%
Total Watershed Area	308.55	100.00%


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

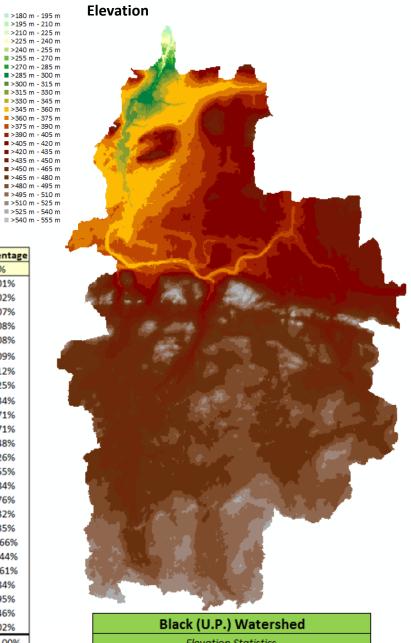
406

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	8.88 294.31	2.88% 95.38%
Water	5.36	1.74%
Total Watershed Area	308.55	100.00%

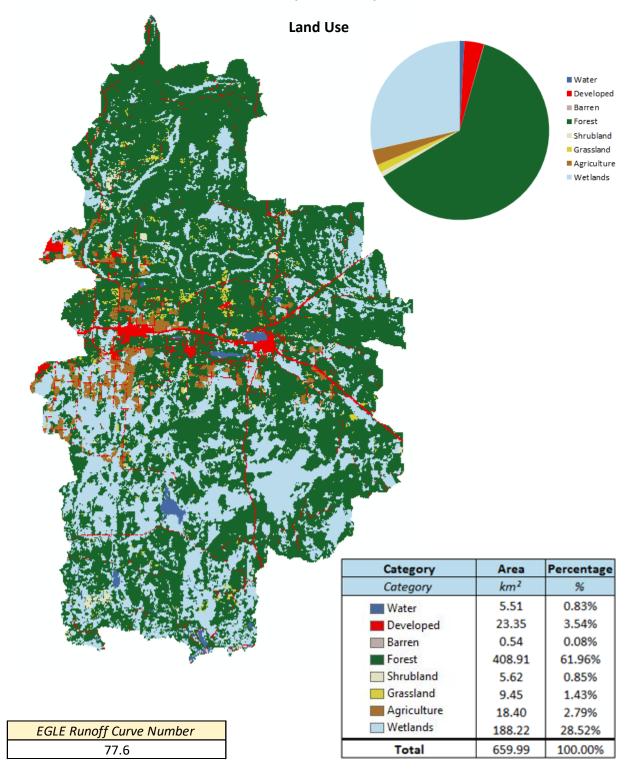


APPENDIX TT. BLACK RIVER (GOGEBIC) WATERSHED (40)

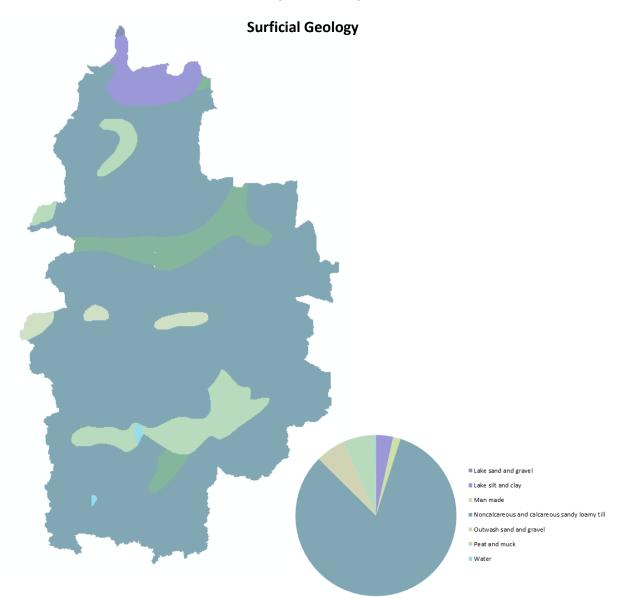

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4031000	BLACK RIVER NEAR BESSEMER, MI	-90.074618	46.511336	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)				1

USACE's National Inventory of Dams (NID)			
NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees
MI01610	Sunday Lake Dam	-89.960000	46.481670
MI00070	Bessemer Township Park Dam	-90.001660	46.473330
MI00071	Black River Dam	-90.055000	46.340000
MI00072	McDonald Lake Dam	-90.013890	46.390560

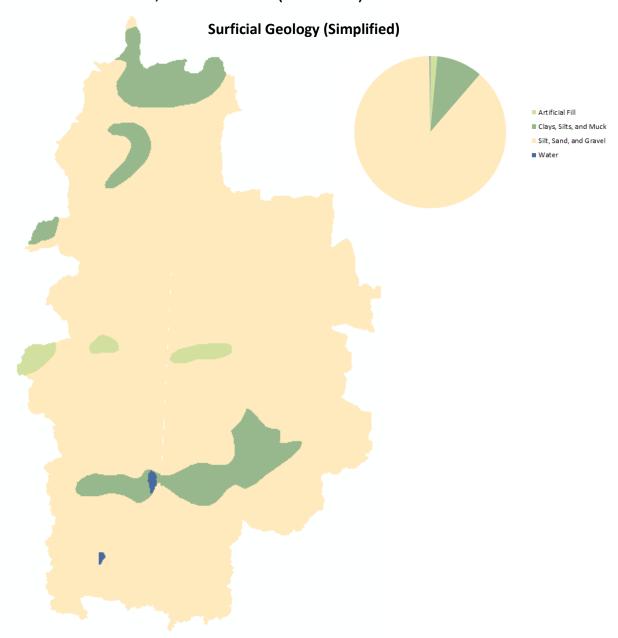
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


		■ >495 m
		■ >510 m ■ >525 m
		≡ >540 m
Category	Area	Percentage
Category	km²	%
>180 m - 195 m	0.09	0.01%
🔲 >195 m - 210 m	0.16	0.02%
🔲 >210 m - 225 m	0.45	0.07%
>225 m - 240 m	0.51	0.08%
🔲 >240 m - 255 m	0.54	0.08%
■ >255 m - 270 m	0.62	0.09%
= >270 m - 285 m	0.79	0.12%
■ >285 m - 300 m	1.63	0.25%
>300 m - 315 m	2.22	0.34%
■ >315 m - 330 m	4.68	0.71%
📕 >330 m - 345 m	4.68	0.71%
🔜 >345 m - 360 m	29.55	4.48%
📕 >360 m - 375 m	28.10	4.26%
📕 >375 m - 390 m	30.05	4.55%
📕 >390 m - 405 m	38.53	5.84%
📕 >405 m - 420 m	64.41	9.76%
📕 >420 m - 435 m	41.68	6.32%
📕 >435 m - 450 m	22.12	3.35%
📕 >450 m - 465 m	70.38	10.66%
📕 >465 m - 480 m	121.73	18.44%
📕 >480 m - 495 m	102.99	15.61%
📕 >495 m - 510 m	64.92	9.84%
■ >510 m - 525 m	26.04	3.95%
🔲 >525 m - 540 m	3.00	0.46%
🔲 >540 m - 555 m	0.14	0.02%
Size of Drainage Area	659.99	100.00%

40,	BLACK	RIVER	(GOGEBIC)	WATERSHED
-----	-------	-------	-----------	-----------

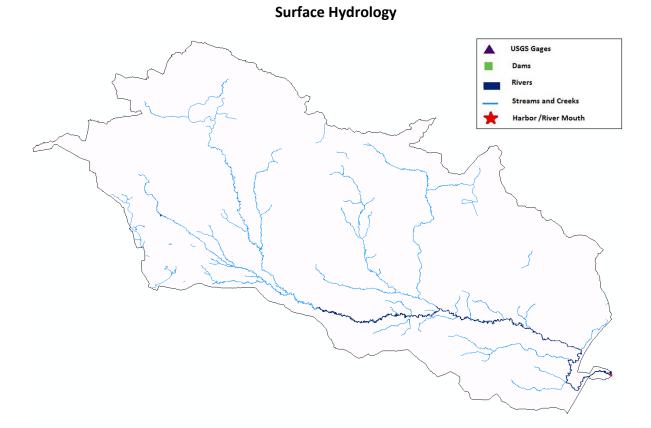

Size of Drainage Area	659.99	km²
Maximum	549.38	m
Minimum	182.96	m
Average	446.83	m
Standard Deviation	50.57	m

All Elevation Measurements with Respect to North American Datum 1983


40, BLACK RIVER (GOGEBIC) WATERSHED

40, BLACK RIVER (GOGEBIC) WATERSHED

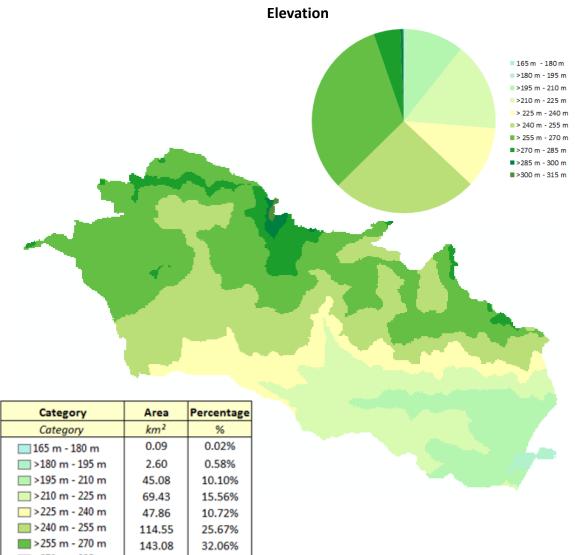
Category	Area	Percentage
Category	km ²	%
Lake sand and gravel	0.48	0.07%
Lake silt and clay	22.24	3.37%
Man made	9.98	1.51%
Noncalcareous and calcareous sandy loamy till	544.26	82.46%
Outwash sand and gravel	39.54	5.99%
Peat and muck	42.56	6.45%
Water	0.94	0.14%
Total Watershed Area	659.99	100.00%


Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

40, BLACK RIVER (GOGEBIC) WATERSHED

Category	Area	Percentage
Category	km²	%
Artificial fill	9.98	1.51%
Clay, Silt, and Muck	64.79	9.82%
Silt, Sand, and Gravel	584.28	88.53%
Water	0.94	0.14%
Total Watershed Area	659.99	100.00%

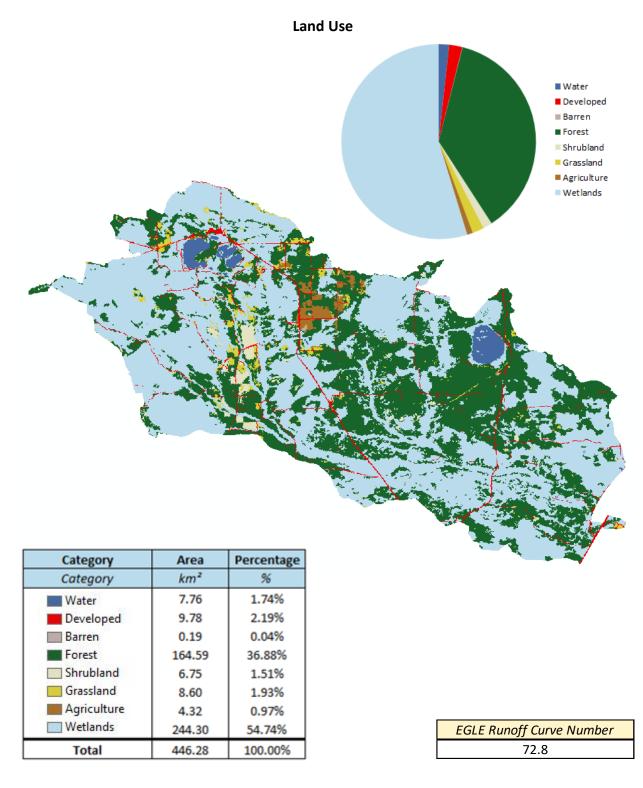
Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

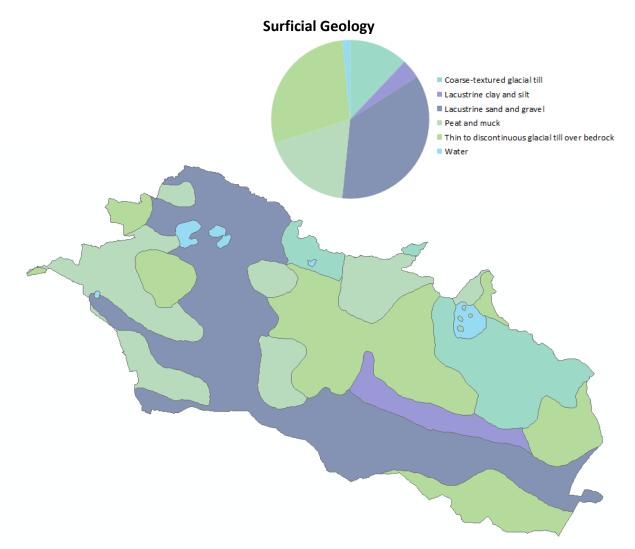


APPENDIX UU. CARP RIVER WATERSHED (41)

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

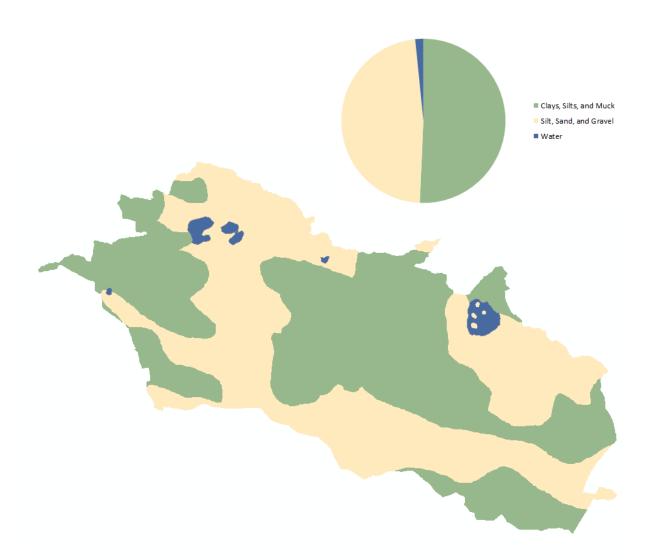
41, CARP RIVER WATERSHED

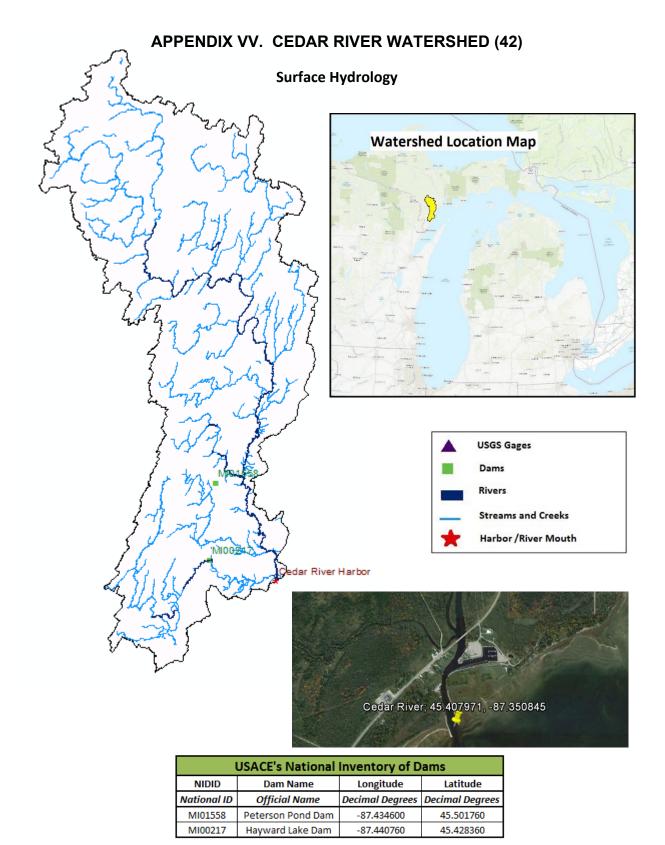



Category	km²	%
🔲 165 m - 180 m	0.09	0.02%
🔜 >180 m - 195 m	2.60	0.58%
🔜 >195 m - 210 m	45.08	10.10%
i >210 m - 225 m	69.43	15.56%
i >225 m - 240 m	47.86	10.72%
🔜 >240 m - 255 m	114.55	25.67%
>255 m - 270 m	143.08	32.06%
>270 m - 285 m	20.84	4.67%
>285 m - 300 m	2.22	0.50%
> 300 m - 315 m	0.54	0.12%
Size of Drainage Area	446.28	100.00%

Carp Watershed		
Elevation Statistics		
Size of Drainage Area	446.28	km²
Maximum	304.00	m
Minimum	176.00	m
Average	242.08	m
Standard Deviation	21.95	m

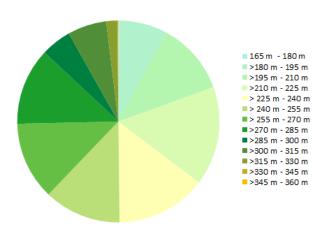
All Elevation Measurements with Respect to North American Datum 1983


41, CARP RIVER WATERSHED



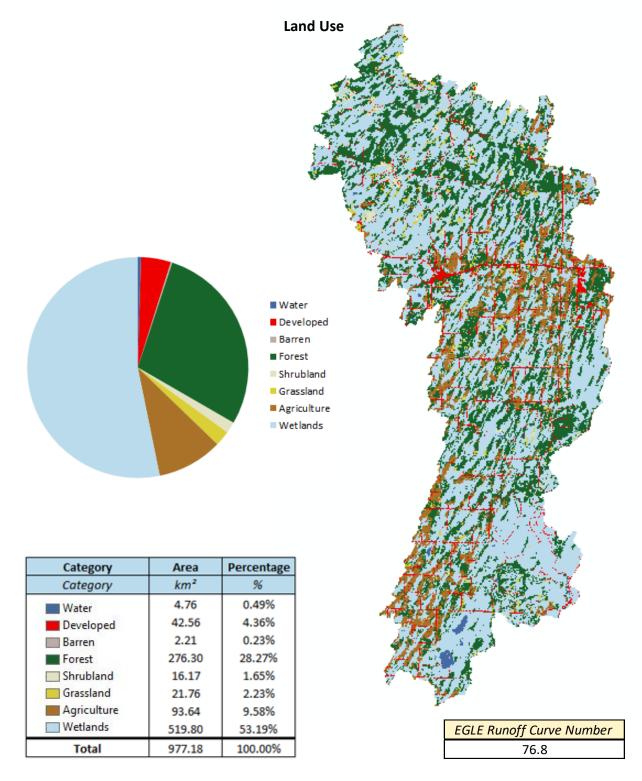
Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	53.89	12.08%
Lacustrine clay and silt	17.52	3.93%
Lacustrine sand and gravel	158.96	35.62%
Peat and muck	82.83	18.56%
Thin to discontinuous glacial till over bedrock	125.92	28.22%
Water	7.16	1.60%
Total Watershed Area	446.28	100.00%

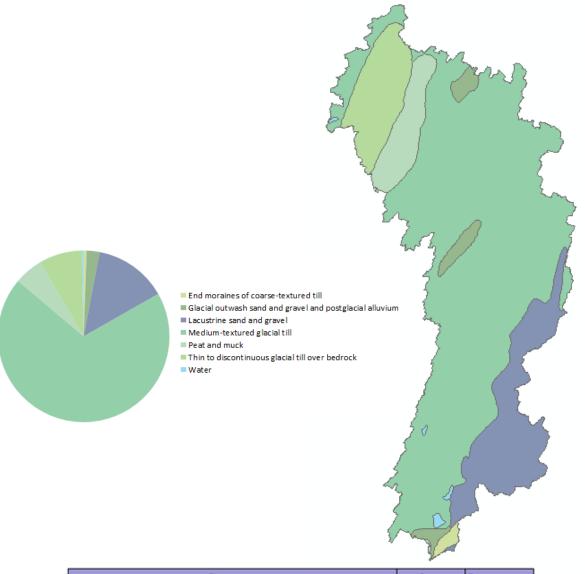
Surficial Geology (Simplified)



Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	226.27	50.70%
Silt, Sand, and Gravel	212.85	47.69%
Water	7.16	1.60%
Total Watershed Area	446.28	100.00%

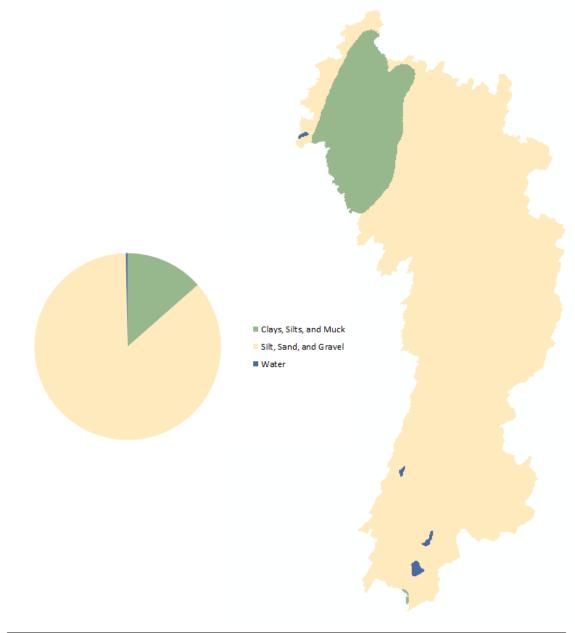
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

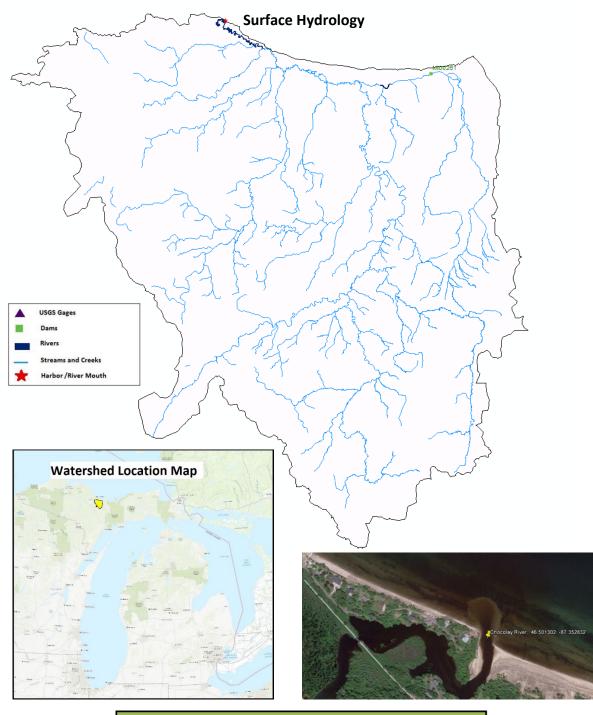

Elevation


Category	Area	Percentage
Category	km²	%
165 m - 180 m	1.35	0.14%
— >180 m - 195 m	75.38	7.71%
🔲 >195 m - 210 m	113.57	11.62%
🔜 >210 m - 225 m	154.73	15.83%
🔜 >225 m - 240 m	141.64	14.49%
🔜 >240 m - 255 m	120.61	12.34%
>255 m - 270 m	122.06	12.49%
= > 270 m - 285 m	120.58	12.34%
= > 285 m - 300 m	47.65	4.88%
>300 m - 315 m	60.75	6.22%
>315 m - 330 m	17.55	1.80%
>330 m - 345 m	1.20	0.12%
<mark></mark>	0.12	0.01%
Size of Drainage Area	977.18	100.00%

Cedar Watershed	ł	
Elevation Statistics		
Size of Drainage Area	977.18	km²
Maximum	350.00	m
Minimum	176.00	m
Average	242.61	m
Standard Deviation	34.75	m

All Elevation Measurements with Respect to North American Datum 1983





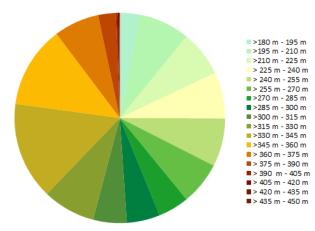
Category	Area	Percentage
Category	km²	%
End moraines of coarse-textured till	5.53	0.57%
Glacial outwash sand and gravel and postglacial alluvium	23.85	2.44%
Lacustrine sand and gravel	134.55	13.77%
Medium-textured glacial till	677.86	69.37%
Peat and muck	52.48	5.37%
Thin to discontinuous glacial till over bedrock	79.71	8.16%
🔲 Water	3.20	0.33%
Total Watershed Area	977.18	99.67%

Surficial Geology (Simplified)

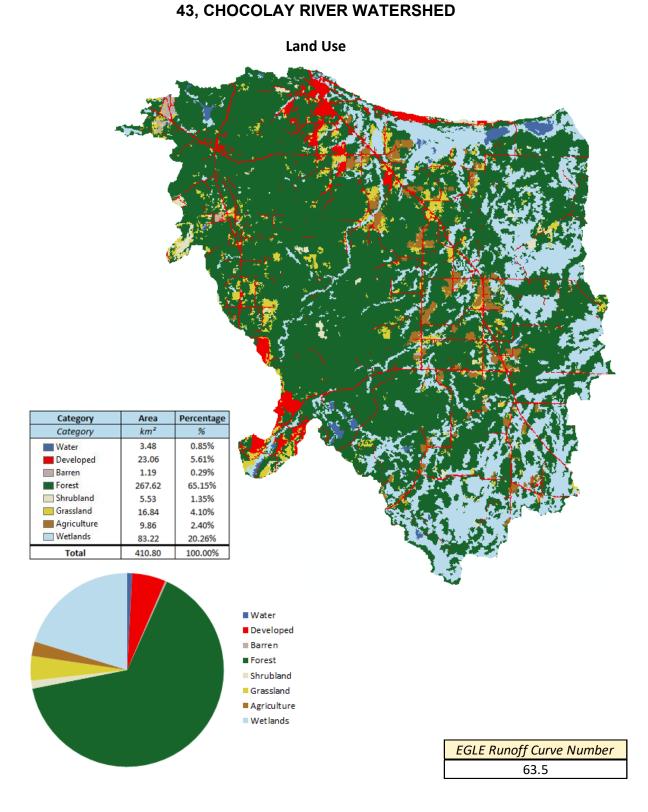
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	132.20	13.53%
Silt, Sand, and Gravel	841.79	86.14%
Water 🗾	3.20	0.33%
Total Watershed Area	977.18	100.00%

APPENDIX WW. CHOCOLAY RIVER WATERSHED (43)

USACE's National Inventory of Dams			
NIDID	Dam Name	Longitude	Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00261	Lake Le Vasseur Dam	-87.216670	46.478330


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

43, CHOCOLAY RIVER WATERSHED


Elevation

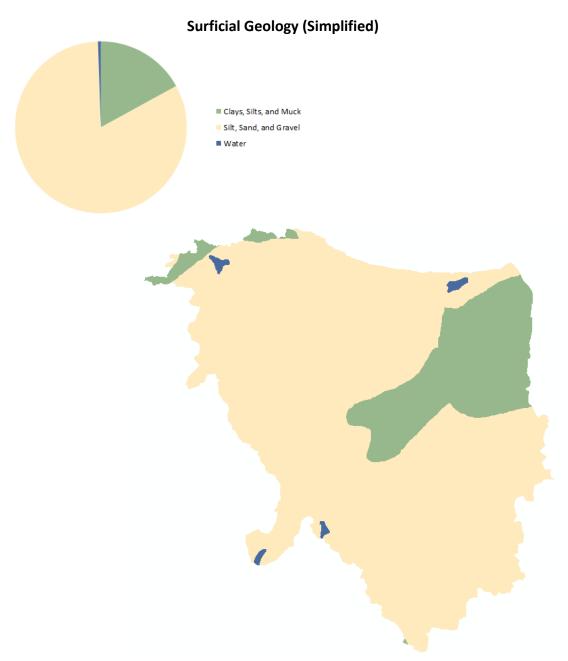
Chocolay Watersh	ed	
Elevation Statistics		
Size of Drainage Area	410.80	km²
Maximum	441.00	m
Minimum	183.00	m
Average	291.87	m
Standard Deviation	58.26	m

Category	Area	Percentage
Category	km ²	%
🔲 >180 m - 195 m	12.66	3.08%
🔲 >195 m - 210 m	32.13	7.82%
🔲 >210 m - 225 m	28.89	7.03%
📃 >225 m - 240 m	29.36	7.15%
🔲 >240 m - 255 m	30.40	7.40%
>255 m - 270 m	27.13	6.60%
> 270 m - 285 m	19.48	4.74%
> 285 m - 300 m	20.96	5.10%
■ >300 m - 315 m	21.22	5.17%
> 315 m - 330 m	33.09	8.05%
📕 >330 m - 345 m	61.60	15.00%
> 345 m - 360 m	51.73	12.59%
📕 >360 m - 375 m	28.55	6.95%
📕 >375 m - 390 m	11.21	2.73%
📕 >390 m - 405 m	0.93	0.23%
📕 >405 m - 420 m	0.92	0.22%
📕 >420 m - 435 m	0.52	0.13%
📕 >435 m - 450 m	0.01	0.00%
Size of Drainage Area	410.80	100.00%

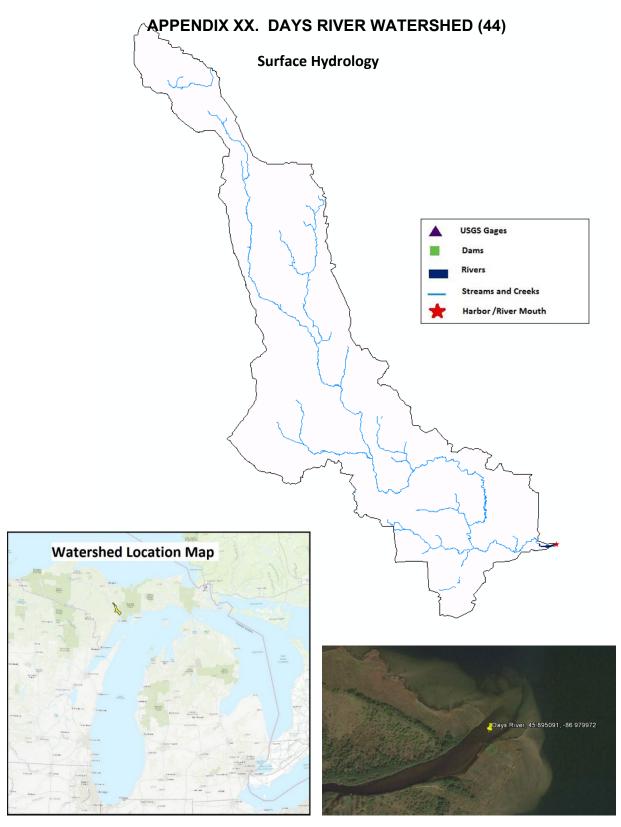
All Elevation Measurements with Respect to North American Datum 1983

43, CHOCOLAY RIVER WATERSHED

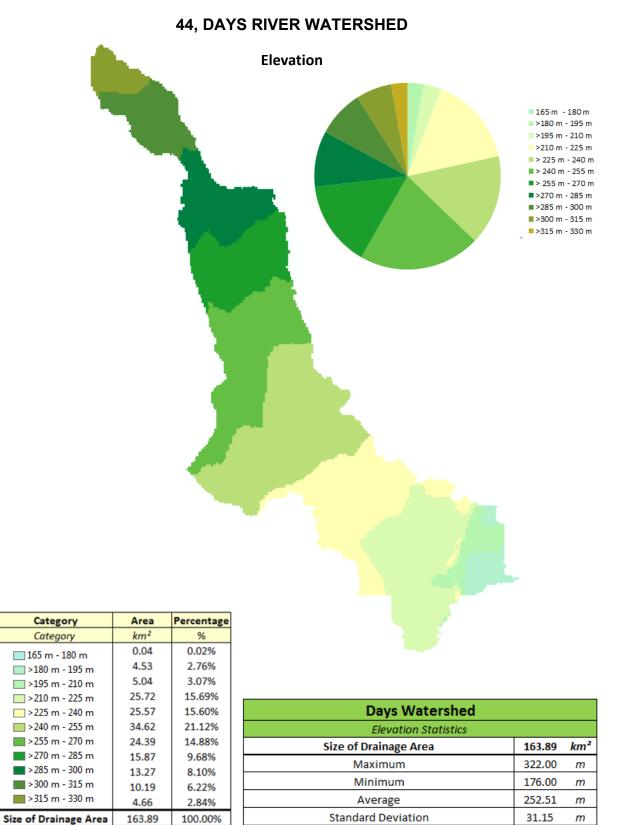
Surficial Geology

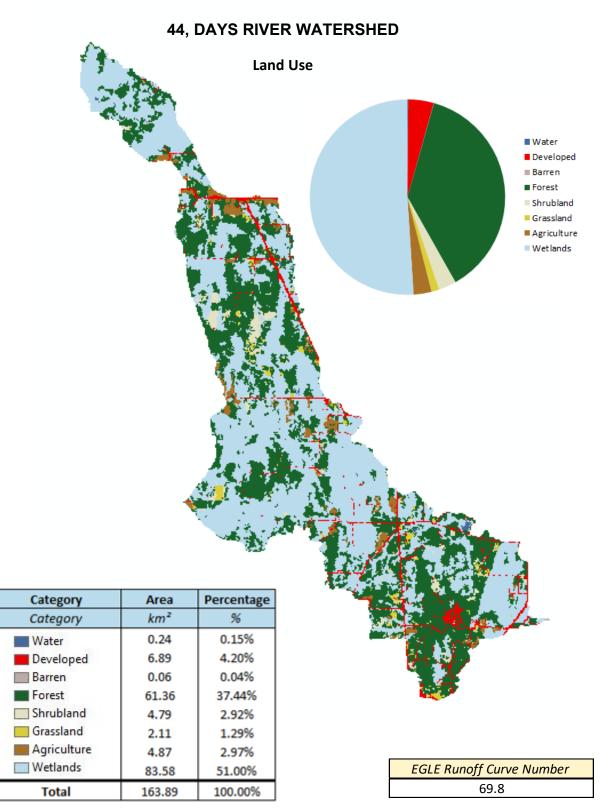


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	0.38	0.09%
End moraines of coarse-textured till	175.44	42.71%
🗉 🥅 Glacial outwash sand and gravel and postglacial alluvium	58.23	14.18%
Lacustrine clay and silt	25.23	6.14%
Lacustrine sand and gravel	47.70	11.61%
Medium-textured glacial till	56.91	13.85%
Peat and muck	0.05	0.01%
Thin to discontinuous glacial till over bedrock	44.64	10.87%
Water	2.22	0.54%
Total Watershed Area	410.80	100.00%

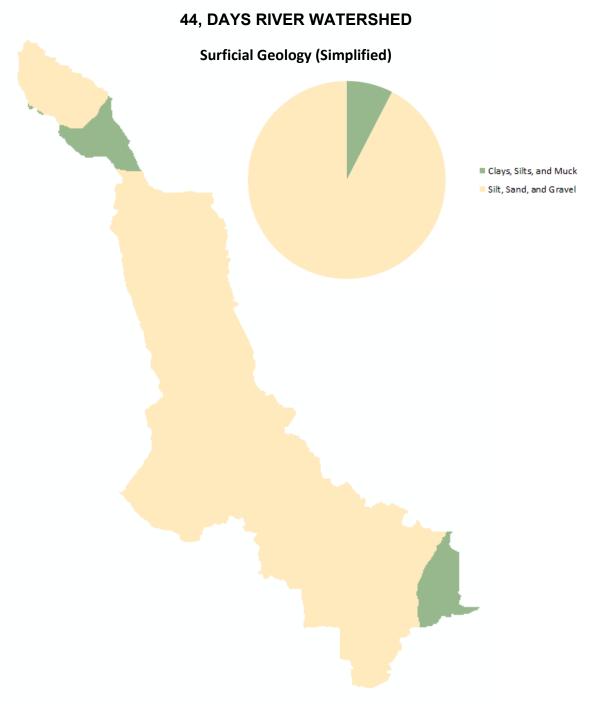

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

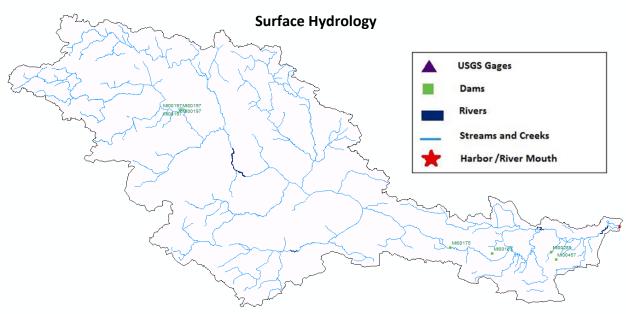
426


43, CHOCOLAY RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	69.92	17.02%
Silt, Sand, and Gravel	338.66	82.44%
Water	2.22	0.54%
Total Watershed Area	410.80	100.00%

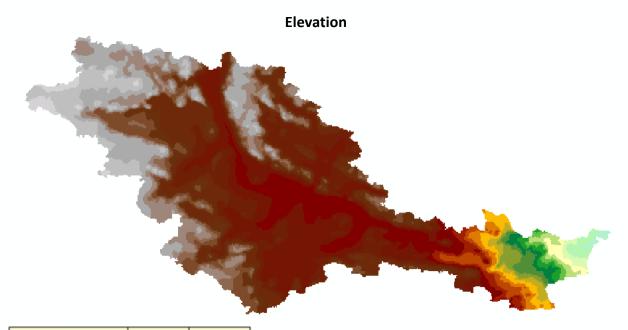
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


All Elevation Measurements with Respect to North American Datum 1983

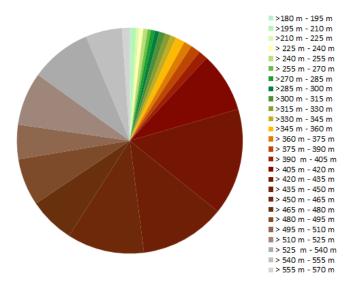

Surficial Geology

Category	Area	Percentage
Category	km ²	%
Glacial outwash sand and gravel and postglacial alluvium	36.03	21.98%
Medium-textured glacial till	115.44	70.44%
Peat and muck	12.30	7.50%
Thin to discontinuous glacial till over bedrock	0.12	0.08%
Total Watershed Area	163.89	100.00%

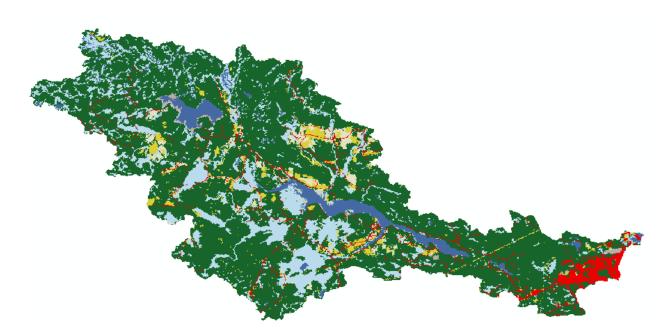
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	12.42	7.58%
Silt, Sand, and Gravel	151.47	92.42%
Total Watershed Area	163.89	100.00%

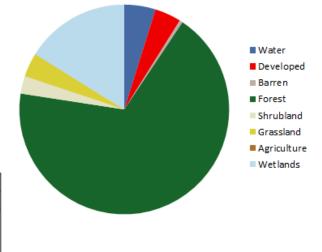

APPENDIX YY. DEAD RIVER WATERSHED (45)

USACE's National Inventory of Dams				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00197	Silver Lake	-87.830000	46.650000	
MI00197	Silver Lake Dike 1	-87.830000	46.650000	
MI00197	Silver Lake Dike 3	-87.830000	46.650000	
MI00197	Silver Lake Dike 4	-87.830000	46.650000	
MI00175	Hoist	-87.560000	46.560000	
MI00183	McClure Dam	-87.518330	46.556670	
MI00289	Brebner Dam	-87.460000	46.558330	
MI00457	Bancroft Dairy Dam	-87.455000	46.553330	



Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

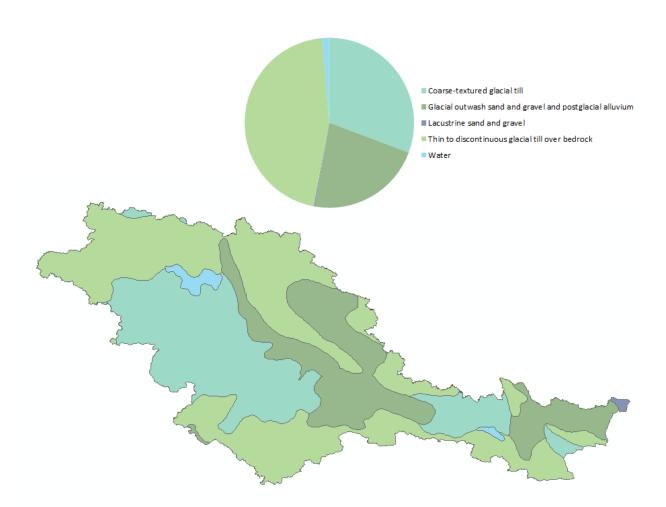

Category	Area Percentag	
Category	km²	%
🔲 >180 m - 195 m	1.15	0.27%
i >195 m - 210 m	2.69	0.63%
>210 m - 225 m	1.79	0.42%
>225 m - 240 m	2.53	0.60%
>240 m - 255 m	2.65	0.62%
>255 m - 270 m	1.95	0.46%
>270 m - 285 m	2.46	0.58%
>285 m - 300 m	2.74	0.65%
>300 m - 315 m	3.65	0.86%
>315 m - 330 m	3.44	0.81%
📕 >330 m - 345 m	3.52	0.83%
📒 >345 m - 360 m	5.68	1.34%
📕 >360 m - 375 m	4.85	1.14%
📕 >375 m - 390 m	5.96	1.40%
📕 >390 m - 405 m	5.56	1.31%
📕 >405 m - 420 m	36.43	8.57%
📕 >420 m - 435 m	65.04	15.31%
📕 >435 m - 450 m	51.83	12.20%
📕 >450 m - 465 m	46.93	11.05%
📕 >465 m - 480 m	27.92	6.57%
📕 >480 m - 495 m	28.70	6.75%
>495 m - 510 m	20.95	4.93%
>510 m - 525 m	32.37	7.62%
🔤 >525 m - 540 m	37.19	8.75%
🔤 >540 m - 555 m	22.16	5.22%
🔲 >555 m - 570 m	4.76	1.12%
Size of Drainage Area	424.91	100.00%



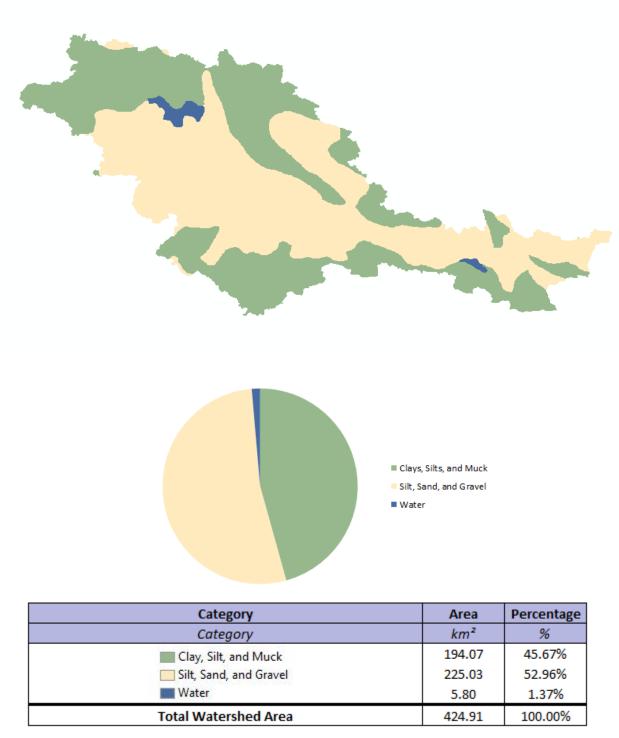
Dead Watershed		
Elevation Statistics		
Size of Drainage Area	424.91	km²
Maximum	565.00	m
Minimum	184.00	m
Average	452.68	m
Standard Deviation	68.08	m

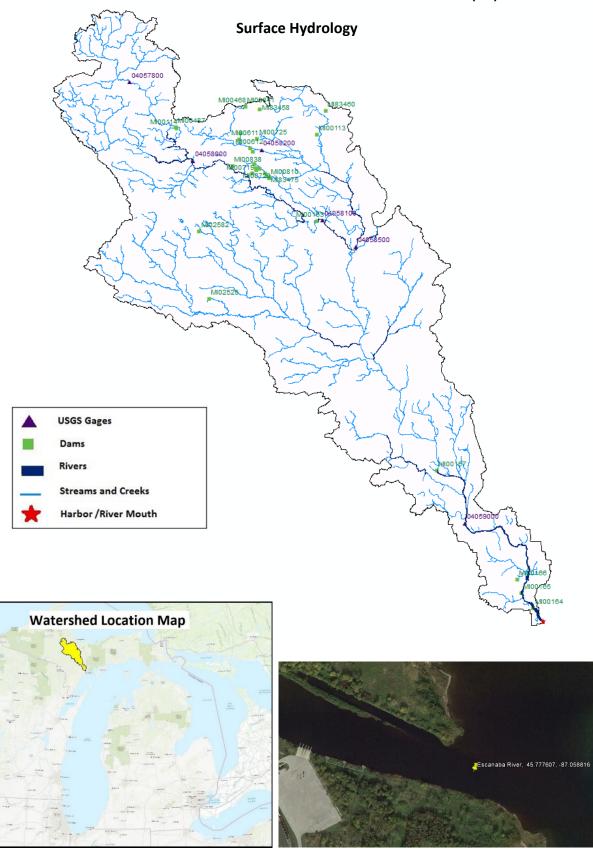
All Elevation Measurements with Respect to North American Datum 1983

Land Use



Category	Area	Percentage
Category	km²	%
Water	20.50	4.83%
📕 Developed	17.26	4.06%
Barren	2.08	0.49%
Forest	289.20	68.06%
Shrubland	11.48	2.70%
Grassland	15.67	3.69%
Agriculture	0.09	0.02%
Wetlands	68.63	16.15%
Total	424.91	100.00%

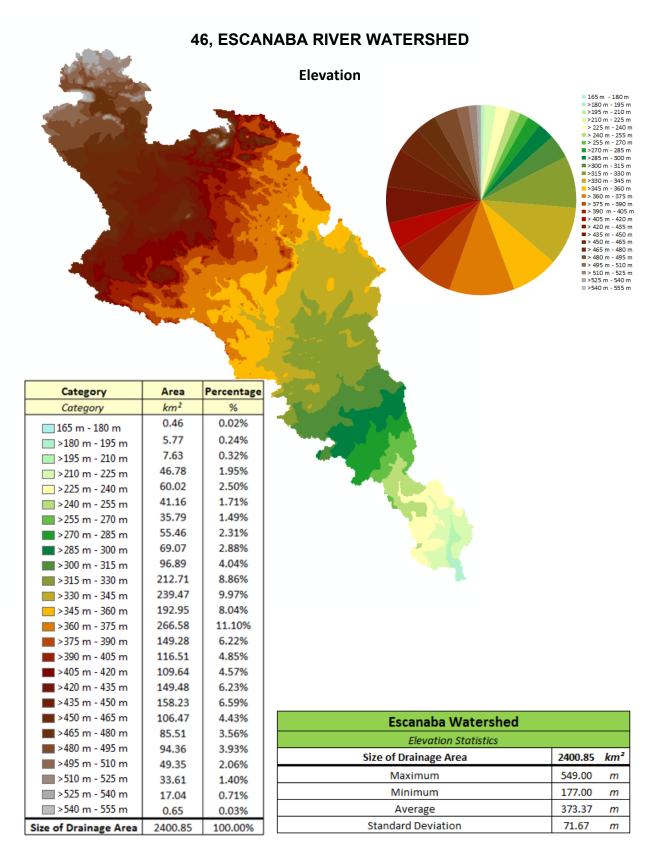

EGLE Runoff Curve Number 65.6


Surficial Geology

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	130.47	30.71%
Glacial outwash sand and gravel and postglacial alluvium	93.62	22.03%
Lacustrine sand and gravel	0.94	0.22%
Thin to discontinuous glacial till over bedrock	194.07	45.67%
Water	5.80	1.37%
Total Watershed Area	424.91	100.00%

Surficial Geology (Simplified)

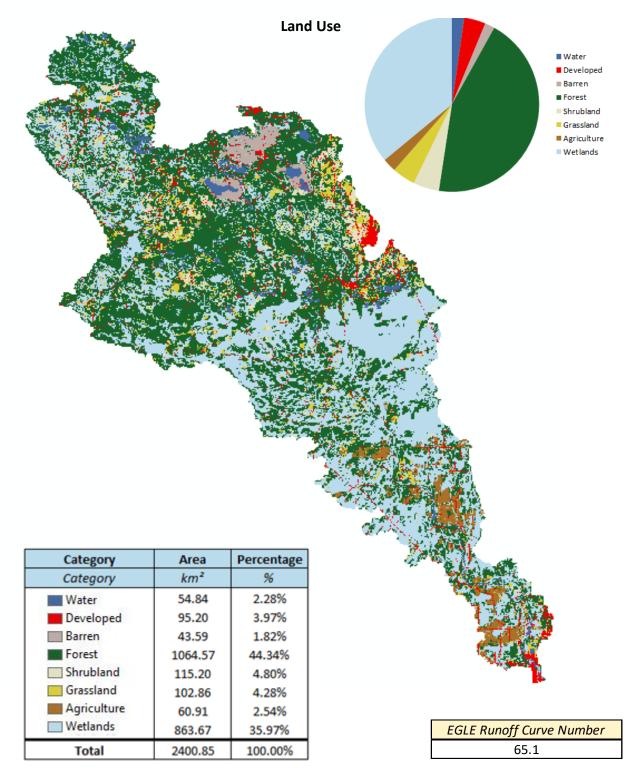
APPENDIX ZZ. ESCANABA RIVER WATERSHED (46)

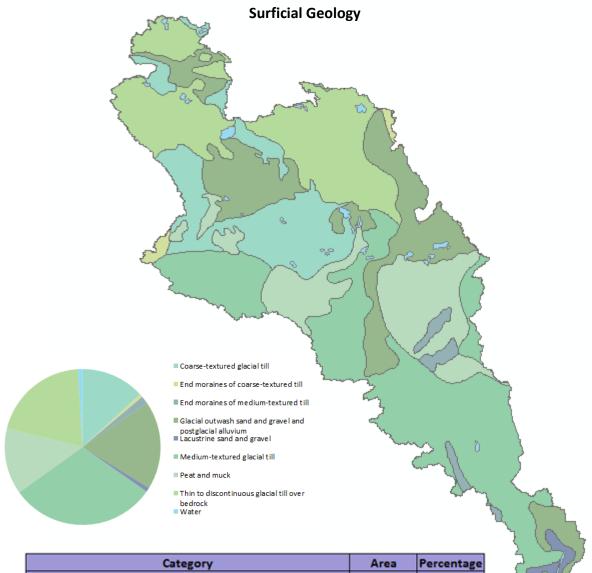

46, ESCANABA RIVER WATERSHED

Dam Information and USGS Streamgages

USACE's National Inventory of Dams				
NIDID	Dam Name	Longitude Latitud		
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00166	Escanaba No 3	-87.110000	45.833300	
MI00167	Escanaba No 4 Boney Falls	-87.270000	45.980000	
MI00101	Empire Mine Tertiary Pond Dam	-87.627780	46.386110	
MI00163	Cataract Hydroelectric	-87.512700	46.316000	
MI00113	Gribben North Tailings Basin Dam	-87.516670	46.433330	
MI00114	Greenwood Afterbay Dam	-87.791660	46.438330	
MI00164	Escanaba No 1 Dam	-87.078330	45.795000	
MI00165	Escanaba No 2 Dam	-87.101670	45.815000	
MI83458	OGDEN DAM	-87.629170	46.466670	
MI83460	HOOVER DAM	-87.500000	46.466670	
MI83476	TILDEN RECIRCULATION BASIN DAM	-87.666660	46.433330	
MI83465	EMPIRE MINE SECONDARY POND DAM	-87.641670	46.379170	
MI83466	EMPIRE MINE TERTIARY POND DAM	-87.616670	46.379170	
MI83473	EMPIRE MINE TAILINGS BASIN DAM	-87.637500	46.391670	
MI83474	SCHWEITZER DAM	-87.641670	46.408330	
MI83475	EMPIRE MINE EXPANDED TERTIARY DAM	-87.608330	46.375000	
MI02525	Gunnel Dam	-87.720830	46.207780	
MI02582	Trout Lake Dam	-87.743060	46.298610	
MI00468	Lake Sally Dam	-87.658330	46.470000	
MI00487	Greenwood Reservoir Dam	-87.793330	46.440000	
MI00611	Tilden Recirculation Basin	-87.668330	46.425000	
MI00612	Schweitzer Dam	-87.646670	46.413330	
MI00719	Empire Mine Tailings Basin Dam	-87.633330	46.386670	
MI00720	Empire Mine Secondary Pond Dam	-87.633330	46.383340	
MI00725	Hoover Pond Dam	-87.633330	46.426670	
MI00810	Empire Mine Expanded Tertiary Dam	-87.608330	46.372780	
MI00838	ETB Waterway Dams	-87.681390	46.388610	
MI00841	Ogden Lake Dam	-87.658330	46.470000	

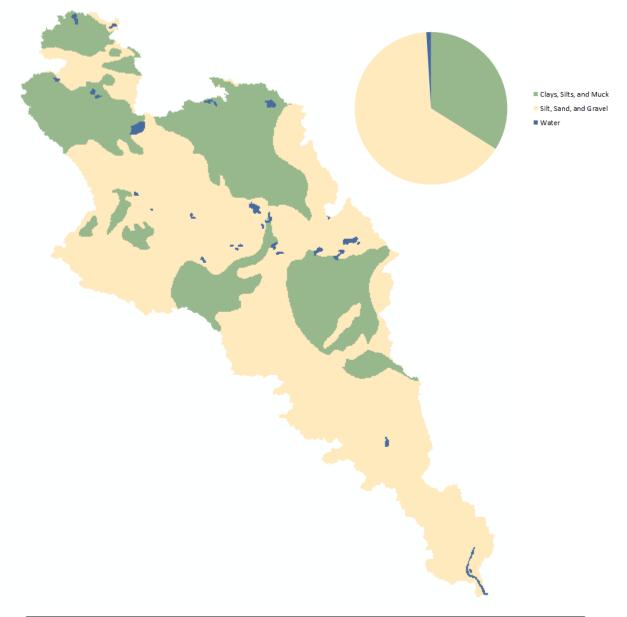
USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4057800	MIDDLE BRANCH ESCANABA RIVER AT HUMBOLDT, MI	-87.886524	46.499103	yes
4058000	M BR ESCANABA RIVER NR ISHPEMING, MI	-87.758468	46.394384	
4058100	MIDDLE BRANCH ESCANABA RIVER NR PRINCETON, MI	-87.502082	46.317165	yes
4058200	SCHWEITZER CREEK NEAR PALMER, MI	-87.624303	46.411050	yes
4058500	EAST BRANCH ESCANABA RIVER AT GWINN, MI	-87.435416	46.282167	
4059000	ESCANABA RIVER AT CORNELL, MI	-87.213748	45.908573	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			4	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

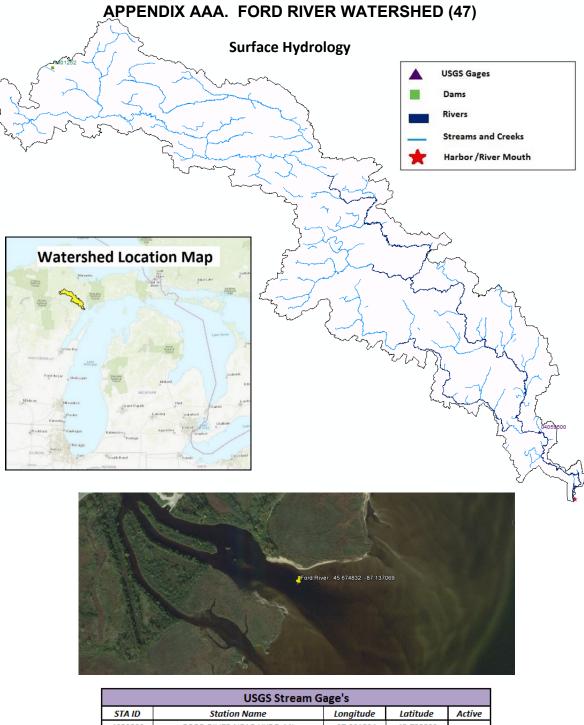


All Elevation Measurements with Respect to North American Datum 1983

440



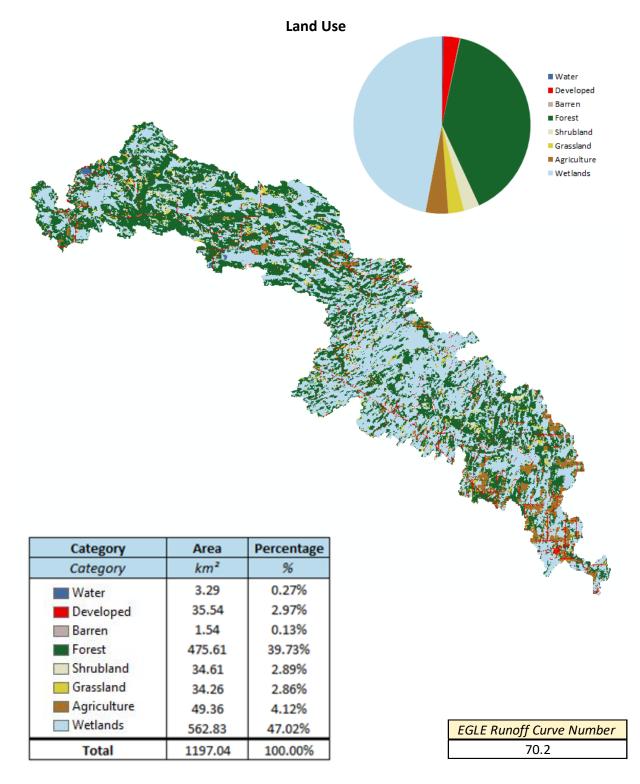
46, ESCANABA RIVER WATERSHED


Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	316.07	13.16%
End moraines of coarse-textured till	16.95	0.71%
End moraines of medium-textured till	39.17	1.63%
Glacial outwash sand and gravel and postglacial alluvium	439.71	18.31%
Lacustrine sand and gravel	21.39	0.89%
Medium-textured glacial till	729.62	30.39%
Peat and muck	331.60	13.81%
Thin to discontinuous glacial till over bedrock	482.86	20.11%
Water	23.49	0.98%
Total Watershed Area	2400.85	100.00%

46, ESCANABA RIVER WATERSHED

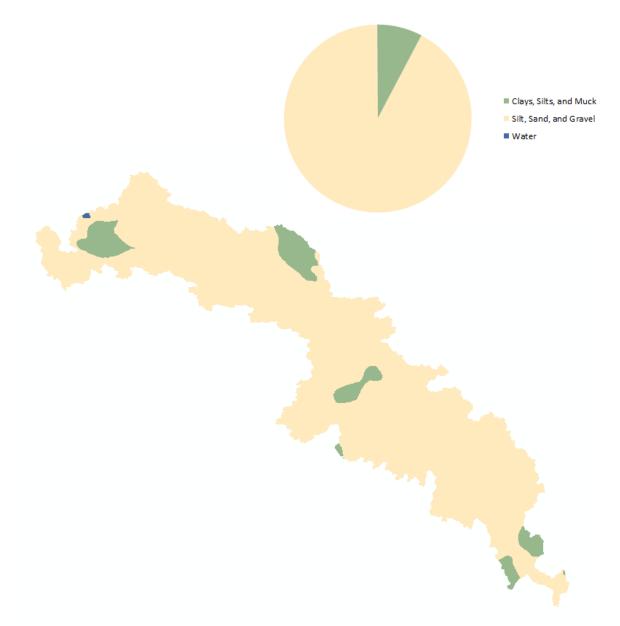
Surficial Geology (Simplified)

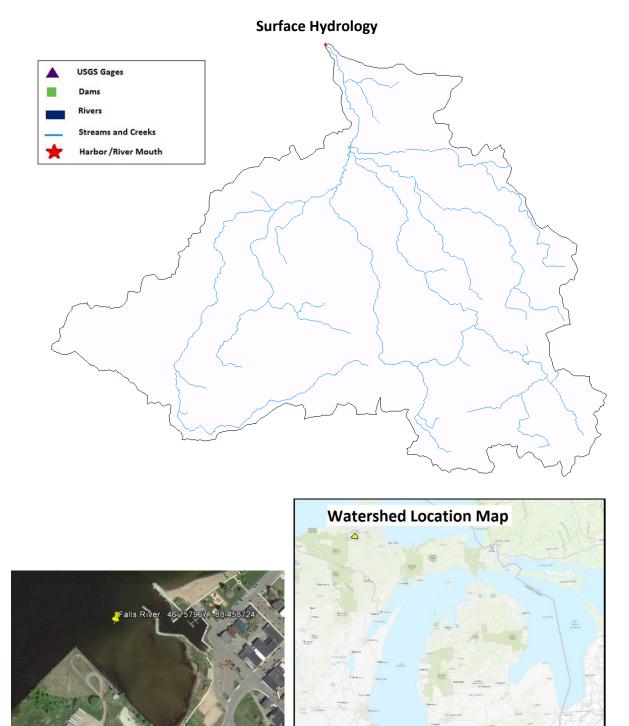
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	814.46	33.92%
Silt, Sand, and Gravel	1562.90	65.10%
Water	23.49	0.98%
Total Watershed Area	2400.85	100.00%


STA ID	Station Name	Longitude Latitude		Active	
4059500	FORD RIVER NEAR HYDE, MI	FORD RIVER NEAR HYDE, MI -87.201524 45.755523		yes	
Number of Active USGS Stream Gage's in Drainage Area (2009)				1	
	USACE's National Inventory of Dams				
NIDID Dam Name Longitude Latitude					titude
National ID	rtional ID Official Name Decimal Degrees Decimal		al Degrees		
MI01252	Sawyer Lake Dam	-88.055	5000	46.	183330

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

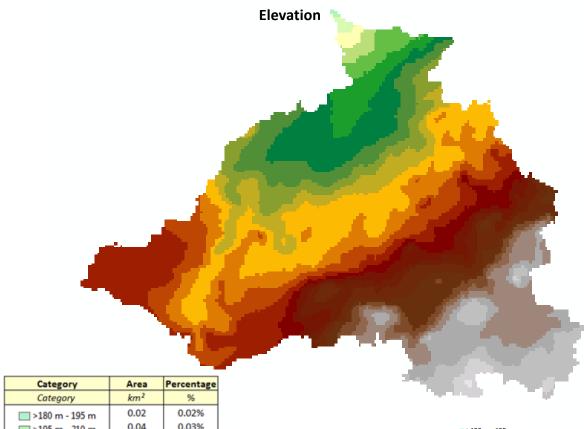
444

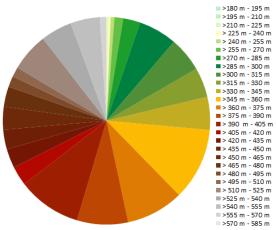

All Elevation Measurements with Respect to North American Datum 1983


Surficial Geology

			 Coarse-textured glacial till End moraines of coarse-textured till End moraines of medium-textured till Glacial outwash sand and gravel and postglacial alluvium Lacustrine sand and gravel Medium-textured glacial till Peat and muck Thin to discontinuous glacial till over bedrock Water
Category	Area	Percentage	
Category Coarse-textured glacial till	km ² 43.10	% 3.60%	
End moraines of coarse-textured till	49.06	4.10%	-
End moraines of medium-textured till	93.76	7.83%	
Glacial outwash sand and gravel and postglacial alluvium	25.49	2.13%	
Lacustrine sand and gravel	13.32	1.11%	
Medium-textured glacial till	879.15	73.44%	
Peat and muck	91.02	7.60%	
Thin to discontinuous glacial till over bedrock	1.42	0.12%	
Water	0.72	0.06%	
Total Watershed Area			

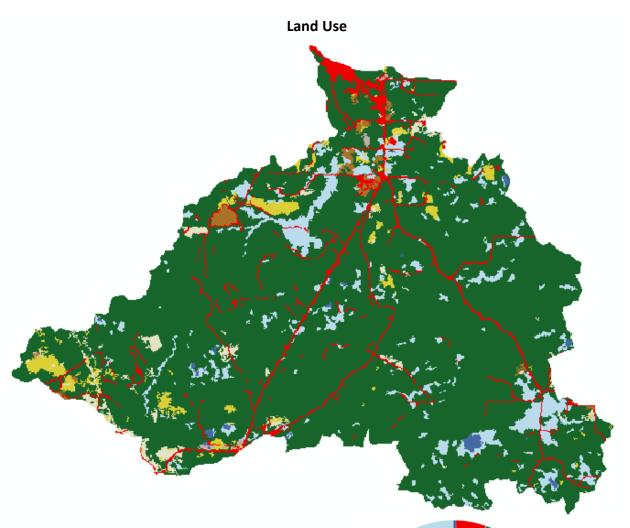
Surficial Geology (Simplified)

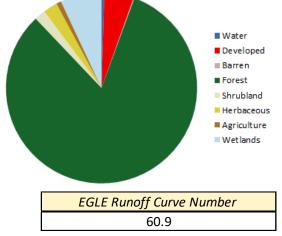

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	92.44	7.72%
Silt, Sand, and Gravel	1103.88	92.22%
Water	0.72	0.06%
Total Watershed Area	1197.04	100.00%


APPENDIX BBB. FALLS RIVER WATERSHED (48)

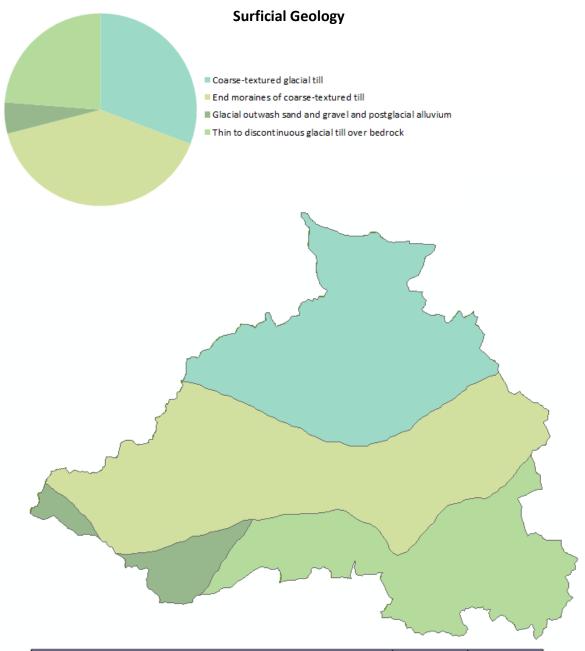
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

48, FALLS RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
>180 m - 195 m	0.02	0.02%
>195 m - 210 m	0.04	0.03%
>210 m - 225 m	0.25	0.20%
>225 m - 240 m	0.47	0.39%
>240 m - 255 m	0.71	0.59%
>255 m - 270 m	1.65	1.36%
>270 m - 285 m	3.24	2.67%
>285 m - 300 m	7.29	6.00%
>300 m - 315 m	6.57	5.41%
>315 m - 330 m	5.60	4.61%
> 330 m - 345 m	6.26	5.15%
>345 m - 360 m	13.68	11.26%
> 360 m - 375 m	10.89	8.96%
= >375 m - 390 m	9.67	7.95%
= >390 m - 405 m	12.12	9.97%
📕 >405 m - 420 m	3.68	3.03%
🔳 >420 m - 435 m	3.59	2.96%
🔳 >435 m - 450 m	3.72	3.06%
🔳 >450 m - 465 m	4.35	3.58%
🔳 >465 m - 480 m	3.79	3.12%
📕 >480 m - 495 m	2.06	1.70%
📕 >495 m - 510 m	1.88	1.54%
■ >510 m - 525 m	7.24	5.95%
📰 >525 m - 540 m	5.91	4.87%
🔲 >540 m - 555 m	5.58	4.59%
🔲 >555 m - 570 m	1.20	0.98%
🖂 > 570 m - 585 m	0.06	0.05%
Size of Drainage Area	121.54	100.00%

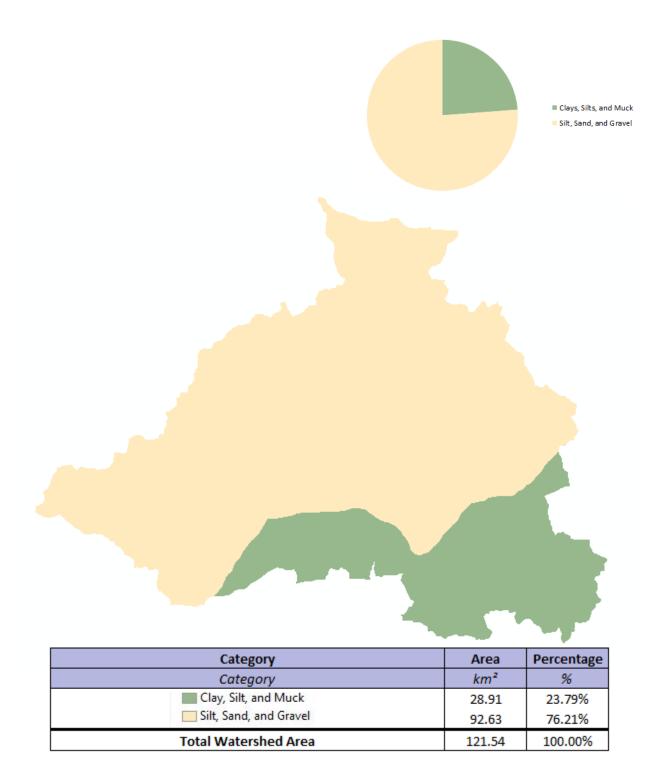

Falls Watershed					
Elevation Statistics					
Size of Drainage Area	121.54	km²			
Maximum	576.00	m			
Minimum	191.00	m			
Average	396.11	m			
Standard Deviation	81.41	m			

All Elevation Measurements with Respect to North American Datum 1983

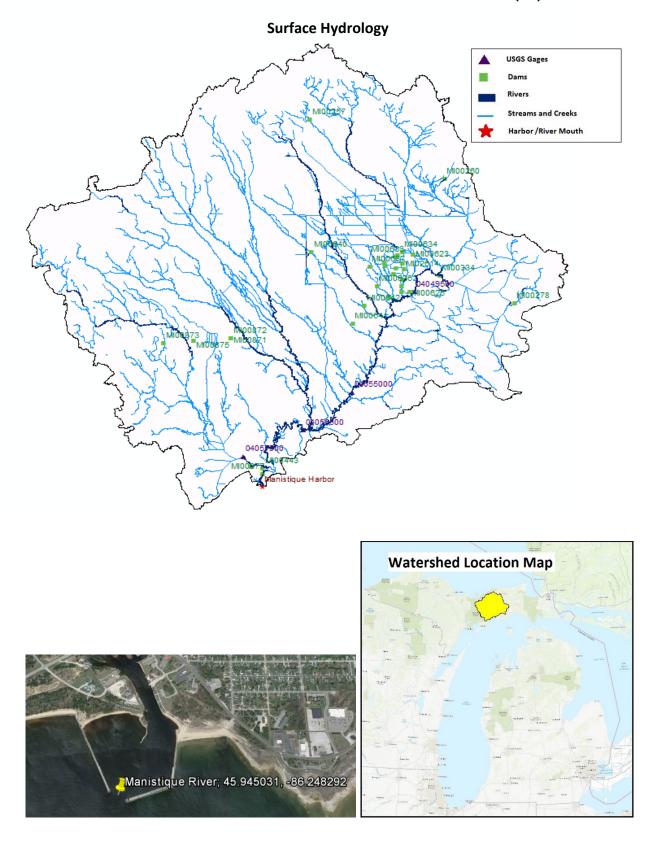

48, FALLS RIVER WATERSHED

Category	Area	Percentage
Category	km²	%
Water	0.58	0.47%
Developed	6.05	4.98%
Barren	0.19	0.15%
Forest	100.04	82.31%
Shrubland	2.28	1.87%
Grassland	2.90	2.39%
Agriculture	1.03	0.85%
Wetlands	8.47	6.97%
Total	121.54	100.00%

48, FALLS RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	37.42	30.79%
End moraines of coarse-textured till	48.86	40.20%
Glacial outwash sand and gravel and postglacial alluvium	6.35	5.23%
Thin to discontinuous glacial till over bedrock	28.91	23.79%
Total Watershed Area	121.54	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources


452

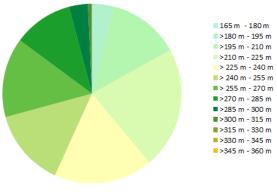
48, FALLS RIVER WATERSHED

Surficial Geology (Simplified)

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

APPENDIX CCC. MANISTIQUE RIVER WATERSHED (49)

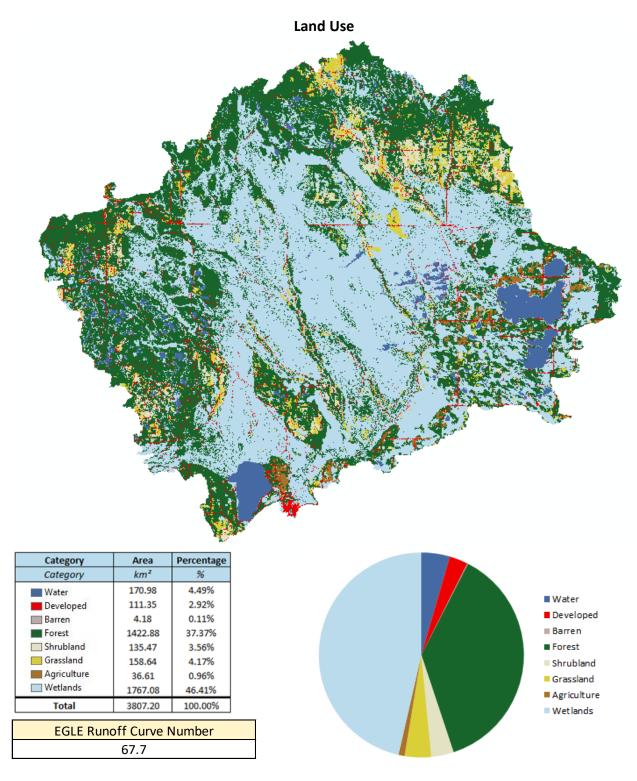
Dam Information and USGS Streamgages


USACE's National Inventory of Dams				
NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00871	SCOTTS MARSH DIKE 1	-86.314300	46.164600	
MI00872	SCOTTS MARSH DIKE 2 & 3	-86.314300	46.164600	
MI00875	MUDDY GRIMES DAM	-86.393000	46.161500	
MI00257	Stanley Lake Dam	-86.148620	46.485400	
MI00260	Spring CreekTrout Pond Dam	-85.863330	46.398330	
MI02614	Grays Creek Raised Grade Dam	-85.950000	46.266700	
MI00271	Carpenter Dam (Indian Lake Dam)	-86.271760	45.977300	
MI00274	Grays Creek Dam	-85.955560	46.233610	
MI00278	Black Creek Dam	-85.716670	46.216670	
MI00334	Manistique Lake Dam	-85.875000	46.256670	
MI00377	Manistique Papers Dam	-86.246670	45.966670	
MI00443	Intake Park Dam	-86.246670	45.975000	
MI00623	Show Pool Dam	-85.930000	46.288330	
MI00624	Upper Goose Pen Dam	-85.955000	46.241660	
MI00625	Lower Goose Pen Dam	-85.938330	46.233330	
MI00626	A-1 Pool	-85.953330	46.251670	
MI00627	B-1 Pool Dam	-85.971660	46.260000	
MI00628	C-1 Pool Dam	-85.966670	46.268330	
MI00629	D-1 Pool	-85.988330	46.271670	
MI00630	E-1 Pool Dam	-85.953330	46.275000	
MI00631	F-1 Pool	-85.963330	46.286670	
MI00632	G-1 Pool	-85.991670	46.275000	
MI00633	H-1 Pool Dam	-85.966670	46.285000	
MI00634	I-1 Pool Dam	-85.953330	46.291670	
MI00636	M-2 Pool Dam	-86.006390	46.241660	
MI00637	C-2 Pool	-86.021670	46.270000	
MI00638	T-2 Pool	-85.980000	46.225000	
MI00640	C-3 Pool	-86.145000	46.291670	
MI00641	Marsh Creek Pool	-86.058330	46.186670	
MI00642	Delta Creek Pool Dam	-86.033330	46.213330	
MI00873	Little Bass Lake Dam	-86.456130	46.156980	

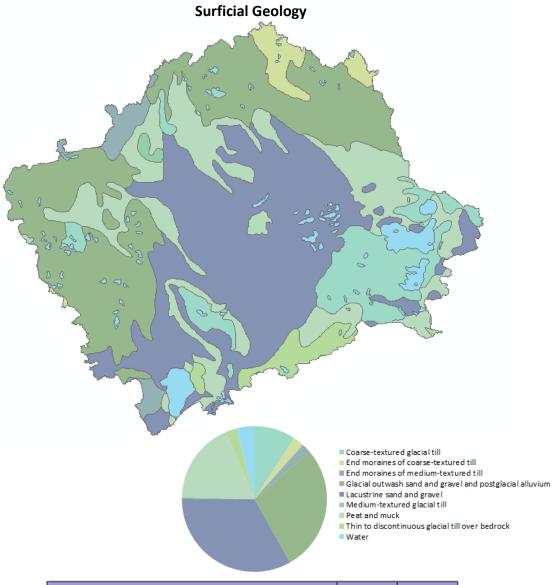
USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4049500	MANISTIQUE RIVER AT GERMFASK, MI	-85.927908	46.233313	
4055000	MANISTIQUE RIVER AT COOKSON BRIDGE NEAR BLANEY, MI	-86.059577	46.086087	
4056500	MANISTIQUE RIVER NEAR MANISTIQUE, MI	-86.161249	46.030529	yes
4057000	INDIAN RIVER NEAR MANISTIQUE, MI	-86.287645	45.991638	
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Category	Area	Percentage
Category	km ²	%
165 m - 180 m	1.21	0.03%
— >180 m - 195 m	147.76	3.88%
🔲 >195 m - 210 m	495.17	13.01%
🔲 >210 m - 225 m	837.52	22.00%
🔁 >225 m - 240 m	680.76	17.88%
🔜 >240 m - 255 m	531.92	13.97%
>255 m - 270 m	546.06	14.34%
> 270 m - 285 m	409.24	10.75%
> 285 m - 300 m	130.17	3.42%
>300 m - 315 m	24.45	0.64%
>315 m - 330 m	2.17	0.06%
🔜 >330 m - 345 m	0.49	0.01%
🔜 >345 m - 360 m	0.25	0.01%
Size of Drainage Area	3807.20	100.00%

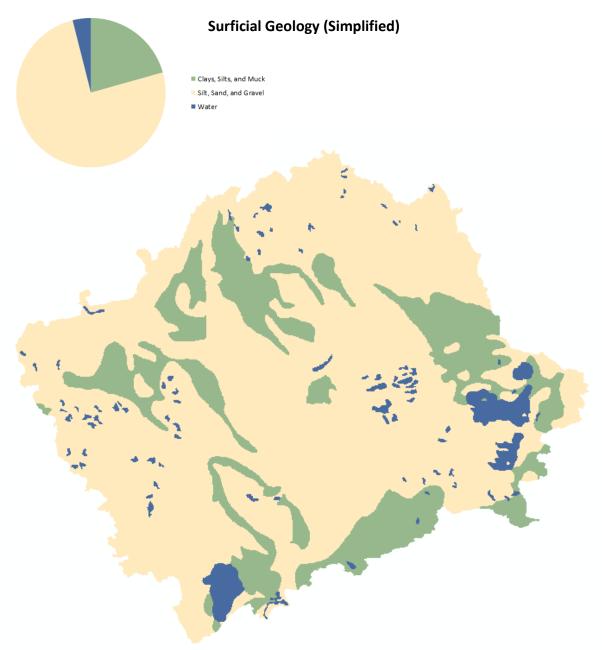


Manistique Watershed				
Elevation Statistics				
Size of Drainage Area	3807.20	km²		
Maximum	472.00	m		
Minimum	176.00	m		
Average	326.66	m		
Standard Deviation	60.75	m		


m 24.45 0.64% Size of Drainage Area

All Elevation Measurements with Respect to North American Datum 1983

49, MANISTIQUE RIVER WATERSHED



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	351.68	9.24%
End moraines of coarse-textured till	92.01	2.42%
End moraines of medium-textured till	80.96	2.13%
Glacial outwash sand and gravel and postglacial alluvium	1068.33	28.06%
Lacustrine sand and gravel	1264.97	33.23%
Medium-textured glacial till	13.38	0.35%
Peat and muck	691.90	18.17%
Thin to discontinuous glacial till over bedrock	93.73	2.46%
Water	150.26	3.95%
Total Watershed Area	3807.20	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	785.63	20.64%
Silt, Sand, and Gravel	2871.31	75.42%
Water	150.26	3.95%
Total Watershed Area	3807.20	100.00%

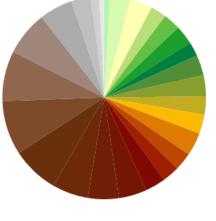
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

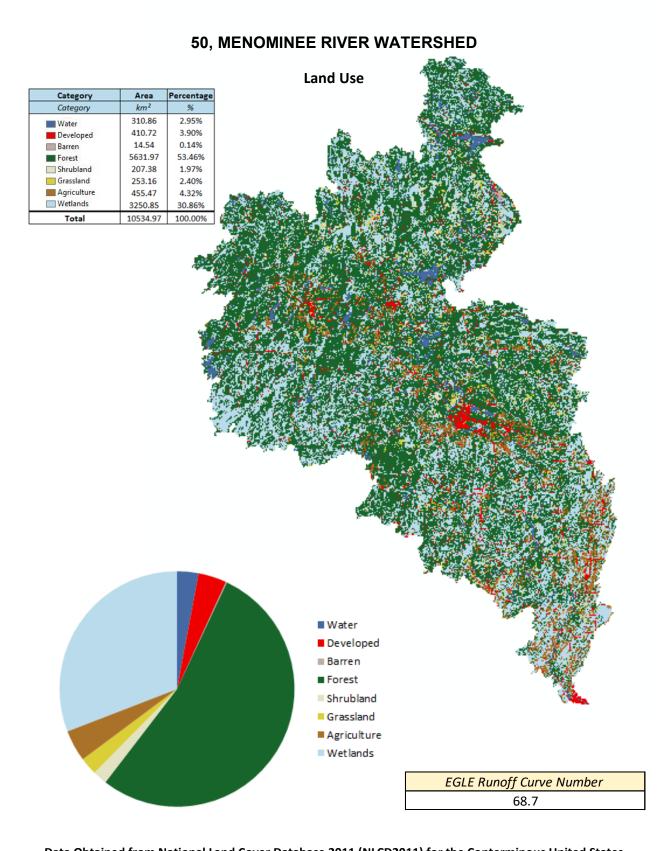
APPENDIX DDD. MENOMINEE RIVER WATERSHED (50)

50, MENOMINEE RIVER WATERSHED

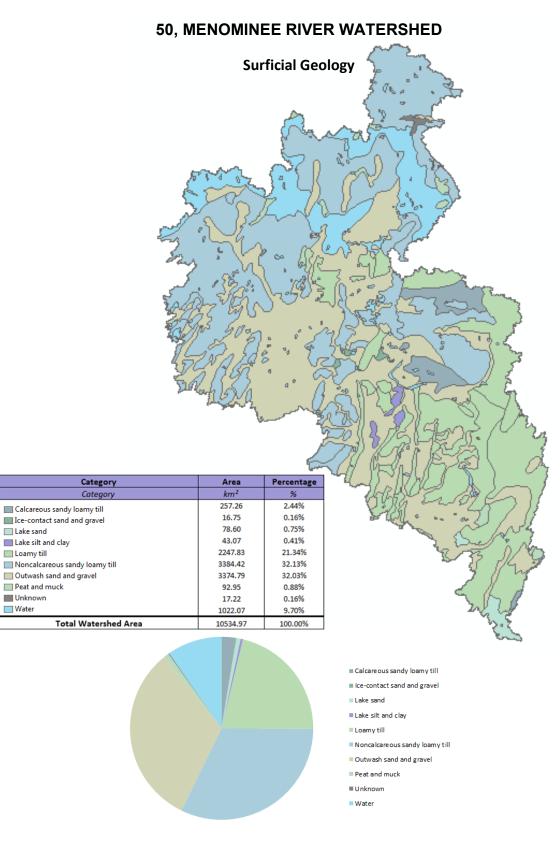
Dam Identification and USGS Streamgages

	USACE's National Inventory of Dams (NID)							
NIDID	Dam Name	Longitude	Latitude	NIDID	Dam Name	Longitude	Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	National ID	Official Name	Decimal Degrees	Decimal Degrees	
WI00073	THIRD MARINETTE	-87.660040	45.107540	MI00207	White Rapids Left Causeway	-87.803300	45.480000	
WI00275	HATCHERY	-88.267520	45.664680	MI00160	Chalk Hill	-87.801800	45.513700	
WI00277	GOODMAN	-88.356570	45.628850	MI00156	Brule	-88.218700	45.947400	
WI00278	SQUAW CREEK	-87.844440	45.452550	MI00156	Brule Remote Dike	-88.216700	45.946700	
WI00460	PANIS, JOE JR.	-87.931270	45.731910	MI00022	Grand Rapids	-87.656200	45.362400	
WI00469	HALLS CREEK WILDLIFE FLOWAGE	-88.300910	45.810340	MI00022	Grand Rapids Detached Dike No 2	-87.660000	45.321700	
WI00475	LINDOW	-88.230710	45.807940	MI00022	Grand Rapids Detached Dike No 3	-87.660000	45.321700	
WI00506	MUD CREEK	-88.457890	45.740650	MI00198	Sturgeon	-87.782700	45.789900	
WI00671	BEECHERLAKE	-88.001190	45.559580	MI00199	Sturgeon Falls	-87.863500	45.741600	
WI00687	KIRTON	-88.260850	45.648450	MI00531	Park Mill	-87.660000	45.107500	
WI00688	BROCK	-88.284270	45.574330	MI00530	Crystal Falls	-88.334500	46.106600	
WI00738	Pine	-88.253300	45.828300	MI00191	Peavy Falls	-88.210000	45.980000	
WI00755	Little Quinnesec Falls	-87.989000	45.774000	MI00143	Twin Falls	-88.070000	45.871700	
WI00875	Menominee	-87.600000	45.400000	MI00143	Twin Falls Auxilliary Spillway	-88.070000	45.871700	
WI01045	MISCAUNO POND	-87.887540	45.585680	MI00143	Twin Falls Auxiliary Dike	-88.070000	45.871700	
WI01175	BRISS LAKE DAM	-88.916700	45.916700	MI01242	Coppo Dam	-87.800000	46.016670	
WI01176	WEST ALLEN CREEK DAM	-88.802300	45.974700	MI01243	Floodwood Lakes Dam	-88.033330	46.225000	
WI01227	SWELSTAD, JACK	-87.889970	45.630380	MI01244	Kimberly-Clark Dam	-88.038330	46.043330	
WI01228	VERLEY, RAY	-88.258410	45.897100	MI01246	Carlson Dam	-87.754720	45.978330	
WI05001	GRAND RAPIDS	-87.656000	45.362240	MI01247	Mary Lake Dam	-87.817020	45.748540	
WI05002	BIG QUINNESEC FALLS	-88.040490	45.787130	MI01309	Gagnon Dam	-88.320000	46.226670	
WI05006	FORD	-88.125520	45.807640	MI00131	Net River Dam	-88.516670	46.428330	
WI05008	BRULE	-88.219070	45.947570	MI02129	Vigo Dam	-87.870550	45.854440	
WI05010	CHALK HILLS	-87.802130	45.513760	MI00215	Hermansville Dam	-87.613330	45.708330	
WI05011	STURGEON FALLS	-87.864940	45.742250	MI00216	Shakey Lakes Dam	-87.838330	45.421670	
WI05012	WHITE RAPIDS	-87.802620	45.482390	MI02502	Richard J Trepanier Dam	-87.960830	45.855000	
WI05016	TWINFALLS	-88.069710	45.872710	MI02611	Nico Lake Dam	-88.028000	46.285600	
WI10317	WAUSAUKEE	-87.952540	45.379580	MI00346	Blomgren s Marsh Dam	-87.793330	45.878330	
WI11495	ALVIN CREEK DAM	-88.866700	45.966700	MI00348	Felch Mountain Dam	-87.885000	46.013330	
MI00205	Way	-88.233300	46.158300	MI00362	Groveland Dam #8	-87.985000	45.945000	
MI00205	Way Dike B-C	-88.233300	46.158300	MI00532	Lower Menominee River Dam	-87.636670	45.106670	
MI00205	Way Dike D	-88.233300	46.158300	MI00568	Republic Mine Tailings Pond Dam B	-87.953330	46.371670	
MI00205	Way Dike E	-88.233300	46.158300	MI00575	Republic Mine Tailings Pond Dam Tertiary	-87.953330	46.368330	
MI00205	Way Dike F	-88.233300	46.158300	MI00578	Republic Mine Tailings Pond Dams	-87.958340	46.373330	
MI00205	Way Dike G	-88.233300	46.158300	MI00579	Republic Dam	-87.985000	46.388330	
MI00103	Big Quinnesec Falls	-88.041700	45.786700	MI00672	Robert Minerick Dam	-88.166660	46.318890	
MI00103	Big Quinnesec Falls Dike "A"	-88.041700	45.786700	MI00716	Hardwood Dam	-87.683330	45.976670	
MI00103	Big Quinnesec Falls Dike "B"	-88.041700	45.786700	MI00081	Warren's Walleye Pond Dam	-87.955000	46.058330	
MI00179	Lower Paint	-88.261700	46.020000	MI00082	Gene s Pond Dam	-87.856670	46.056670	
MI00184	Michigamme Falls	-88.196700	45.955000	MI00826	Little Quinnesec Falls Dam	-87.987500	45.770830	
MI00172	Hemlock Falls	-88.225000	46.133300	MI00842	Red Dam Lake Dam	-87.802220	45.736950	
MI00177	Kingsford	-88.126700	45.808300	MI00088	Hancock Creek Dam	-87.751660	45.918330	
MI00207	White Rapids	-87.803300	45.480000	MI00090	Bear Trap Dam	-88.920000	46.295000	

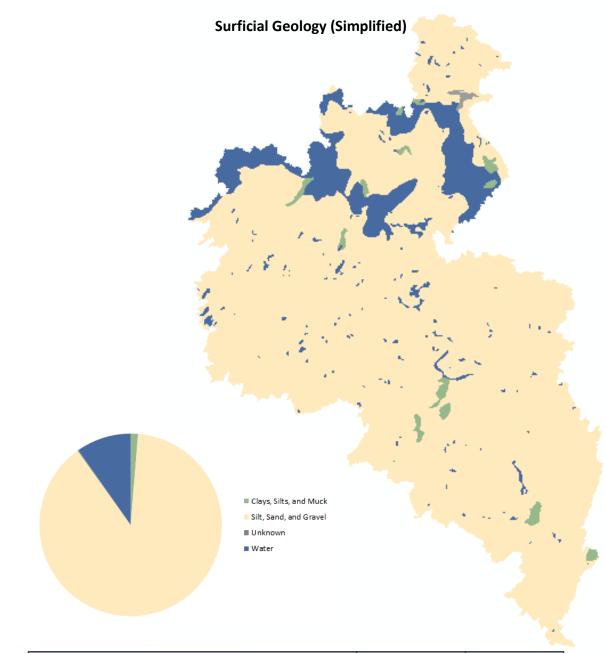

	USGS Stream Gage's			
STA ID	Station Name	Longitude	Latitude	Active
4060500	IRON RIVER AT COUNTY HWY-424 AT CASPIAN, MI	-88.627354	46.058566	yes
4060993	BRULE RIVER AT US HIGHWAY 2 NEAR FLORENCE, WI	-88.315966	45.960787	yes
4061000	BRULE RIVER NR FLORENCE, WI	-88.265967	45.958564	
4061500	PAINT RIVER AT CRYSTAL FALLS, MI	-88.334858	46.105784	
4062000	PAINT RIVER NR ALPHA, MI	-88.258468	46.011064	yes
4062011	BRULE RIVER NEAR COMMONWEALTH, WI	-88.215411	45.947453	yes
4062200	PESHEKEE RIVER NEAR CHAMPION, MI	-88.002634	46.556879	yes
4062500	MICHIGAMME RIVER NEAR CRYSTAL FALLS, MI	-88.215969	46.113838	yes
4063000	MENOMINEE RIVER NEAR FLORENCE, WI	-88.187077	45.951064	yes
4063500	MENOMINEE RIVER AT TWIN FALLS NEAR IRON MT, MI	-88.070129	45.871343	yes
4063700	POPPLE RIVER NEAR FENCE, WI	-88.463178	45.763570	yes
4064500	PINE RIVER BELOW PINE R POWERPLANT NR FLORENCE, WI	-88.225407	45.837177	yes
4065106	MENOMINEE RIVER AT NIAGARA, WI	-87.980680	45.767735	yes
04065300	WEST BRANCH STURGEON RIVER NEAR RANDVILLE, MI	-87.978188	46.012451	
4065500	STURGEON RIVER NEAR FOSTER CITY, MI	-87.754296	45.908289	
4065722	MENOMINEE RIVER NEAR VULCAN, MI	-87.863457	45.736627	yes
4066003	MENOMINEE RIVER BELOW PEMENE CREEK NEAR PEMBINE, WI	-87.787063	45.579410	yes
4066030	MENOMINEE RIVER AT WHITE RAPIDS DAM NEAR BANAT, MI	-87.802338	45.481913	yes
4066500	PIKE RIVER AT AMBERG, WI	-88.000115	45.499965	yes
4066800	MENOMINEE RIVER AT KOSS, MI	-87.702059	45.387195	yes
4067000	MENOMINEE RIVER NEAR KOSS, MI	-87.648725	45.354419	
4067500	MENOMINEE RIVER NEAR MC ALLISTER, WI	-87.663446	45.325809	yes
	Number of Active USGS Stream Gage's in Drainage A	rea (2009)		17


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

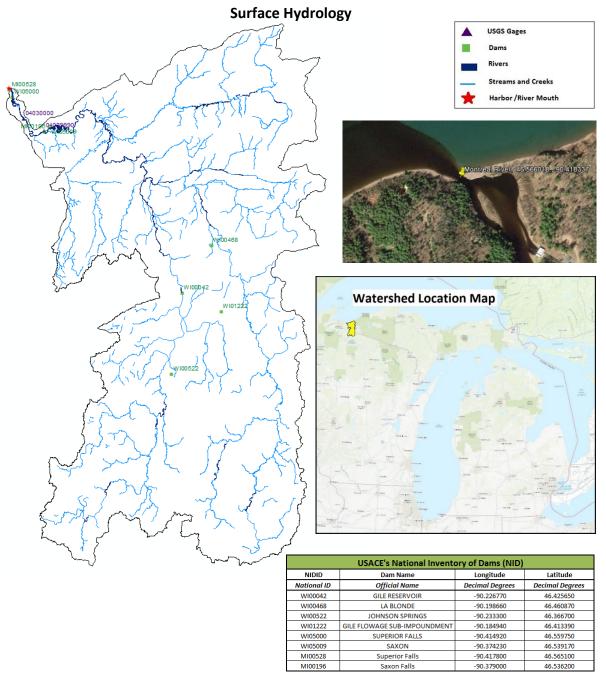
50, MENOMINEE RIVER WATERSHED



Category	Area	Percentag
Category	km²	%
165 m - 180 m	1.14	0.01%
>180 m - 195 m	94.82	0.90%
>195 m - 210 m	340.77	3.23%
>210 m - 225 m	376.67	3.58%
>225 m - 240 m	265.42	2.52%
🔲 >240 m - 255 m	287.75	2.73%
>255 m - 270 m	315.54	3.00%
► >270 m - 285 m	237.77	2.26%
= >285 m - 300 m	341.21	3.24%
■ >300 m - 315 m	353.33	3.35%
📕 >315 m - 330 m	306.05	2.91%
📕 >330 m - 345 m	323.71	3.07%
📒 >345 m - 360 m	383.67	3.64%
📕 >360 m - 375 m	300.99	2.86%
📕 >375 m - 390 m	284.41	2.70%
📕 >390 m - 405 m	341.39	3.24%
📕 >405 m - 420 m	466.23	4.43%
📕 >420 m - 435 m	517.06	4.91%
📕 >435 m - 450 m	602.76	5.72%
📕 >450 m - 465 m	792.71	7.52%
📕 >465 m - 480 m	907.13	8.61%
📕 >480 m - 495 m	840.42	7.98%
■ >495 m - 510 m	743.06	7.05%
■ >510 m - 525 m	557.94	5.30%
🔲 >525 m - 540 m	327.55	3.11%
🔲 >540 m - 555 m	141.64	1.34%
🔲 >555 m - 570 m	66.40	0.63%
🔲 > 570 m - 585 m	16.01	0.15%
□ >585 m	1.44	0.01%
Size of Drainage Area	10534.97	100.00%



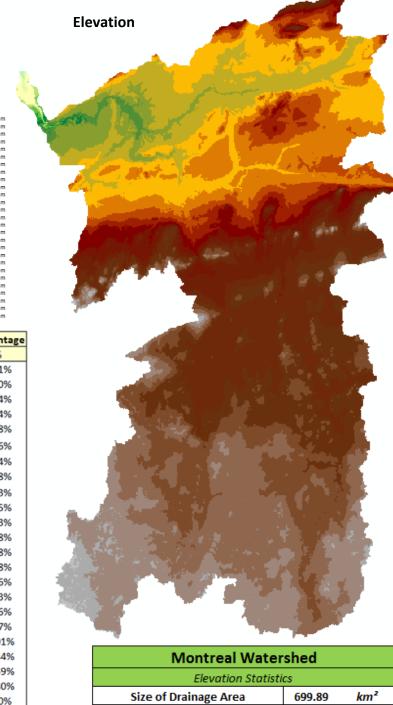
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

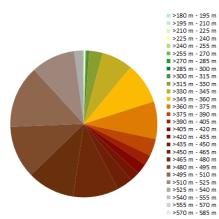

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

50,	MENOMINEE RIVER WATERSHED
-----	---------------------------

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	136.02	1.29%
Silt, Sand, and Gravel	9359.65	88.84%
Unknown	17.22	0.16%
Water	1022.07	9.70%
Total Watershed Area	10534.97	100.00%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States


APPENDIX EEE. MONTREAL RIVER WATERSHED (51)


	USGS Stream Gage's				
STA ID	STA ID Station Name Longitude Latitude Activ				
4029990	MONTREAL RIVER AT SAXON FALLS NEAR SAXON, WI	-90.379902	46.536891	yes	
4030000	4030000 MONTREAL RIVER NEAR SAXON, WI -90.401847 46.544669				
	Number of Active USGS Stream Gage's in Drainage Area (2009)				

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

466

51, MONTREAL RIVER WATERSHED

Category	Area	Percentage
Category	km ²	%
🔲 >180 m - 195 m	0.05	0.01%
🔲 >195 m - 210 m	0.03	0.00%
>210 m - 225 m	0.30	0.04%
<u>>225 m - 240 m</u>	1.68	0.24%
≥240 m - 255 m	0.55	0.08%
>255 m - 270 m	0.43	0.06%
>270 m - 285 m	0.31	0.04%
== >285 m - 300 m	0.57	0.08%
> 300 m - 315 m	4.38	0.63%
■ >315 m - 330 m	20.65	2.95%
= > 330 m - 345 m	47.80	6.83%
<mark></mark>	63.54	9.08%
= > 360 m - 375 m	57.96	8.28%
📕 >375 m - 390 m	26.45	3.78%
📕 > 390 m - 405 m	15.85	2.26%
📕 >405 m- 420 m	16.27	2.33%
📕 >420 m - 435 m	15.12	2.16%
📕 >435 m - 450 m	24.28	3.47%
📕 >450 m - 465 m	70.03	10.01%
📕 >465 m - 480 m	73.06	10.44%
📕 >480 m - 495 m	81.13	11.59%
>495 m - 510 m	96.60	13.80%
■ >510 m - 525 m	67.92	9.70%
🔜 >525 m - 540 m	13.29	1.90%
🔲 >540 m - 555 m	1.58	0.23%
🔲 >555 m - 570 m	0.06	0.01%
🔲 > 570 m - 585 m	0.00	0.00%
Size of Drainage Area	699.89	100.00%

All Elevation Measurements with Respect to North American Datum 1983

Maximum

Minimum

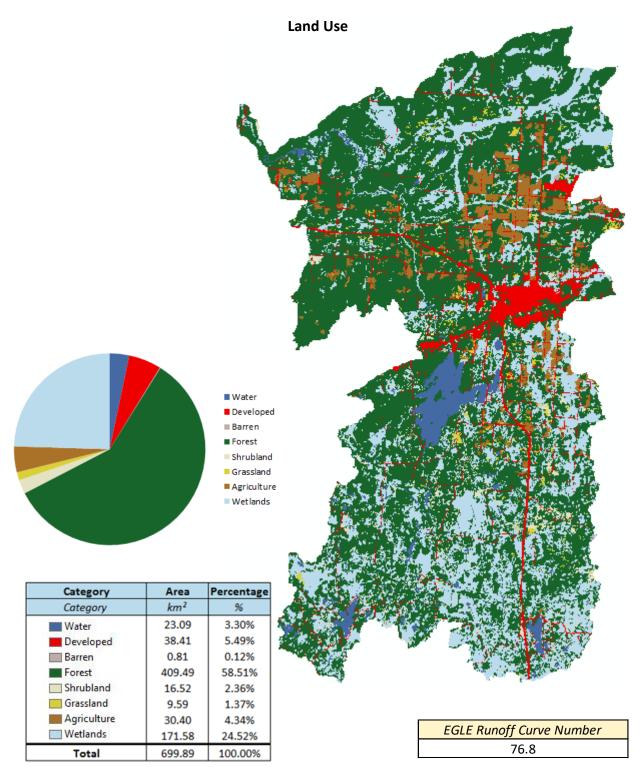
Average

Standard Deviation

570.59

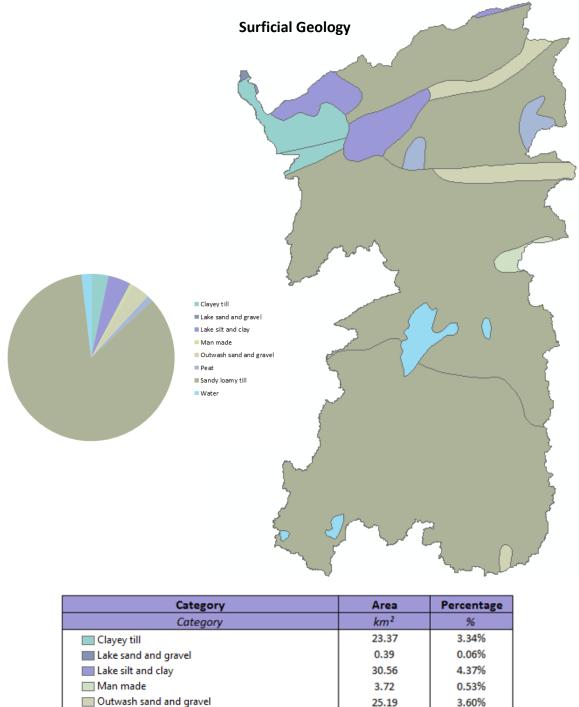
183.48

439.41


66.79

m

m


m

m

51, MONTREAL RIVER WATERSHED

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

51, MONTREAL RIVER WATERSHED

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

8.59

595.16

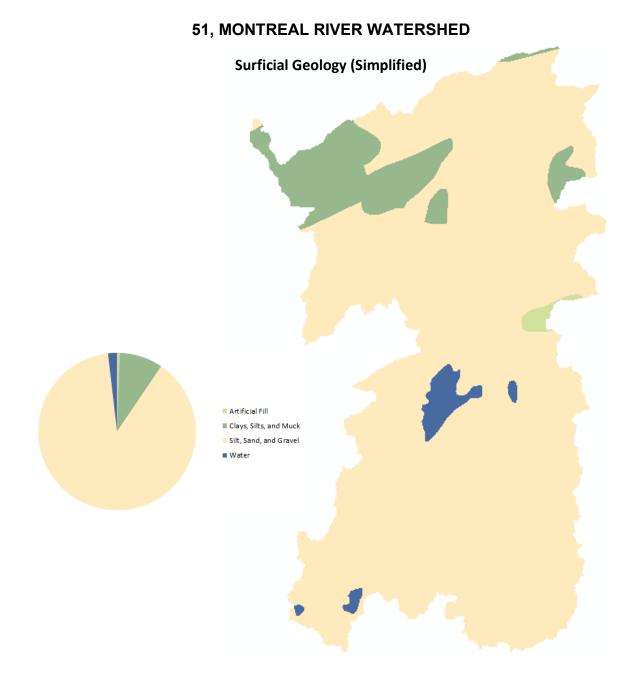
12.92

699.89

1.23%

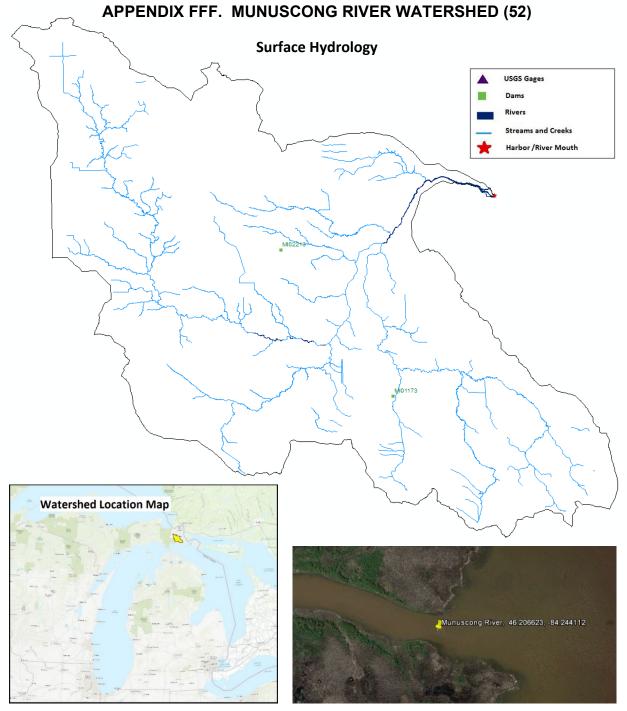
85.04%

1.85%

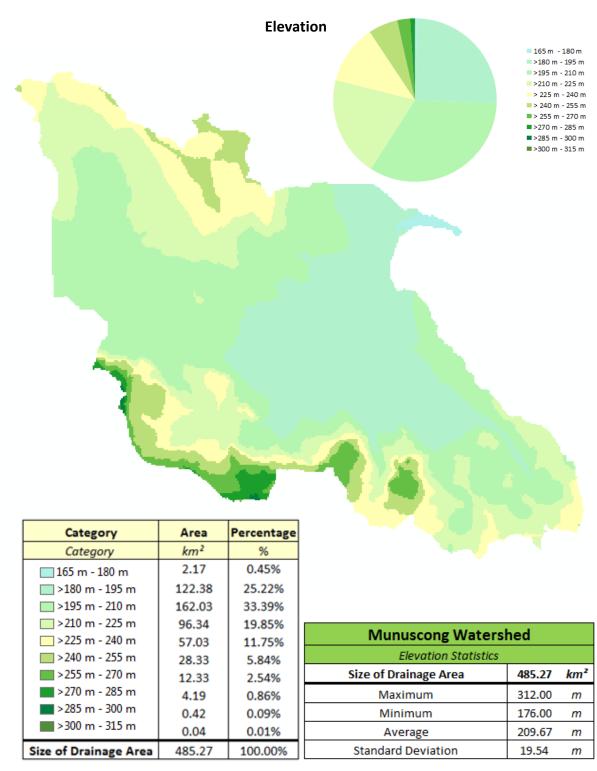

100.00%

Peat

Water

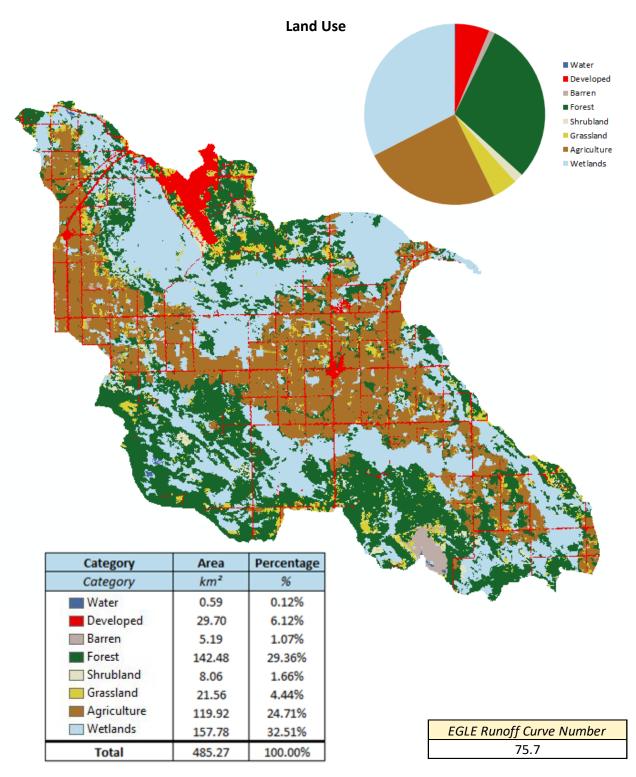

📰 Sandy loamy till

Total Watershed Area

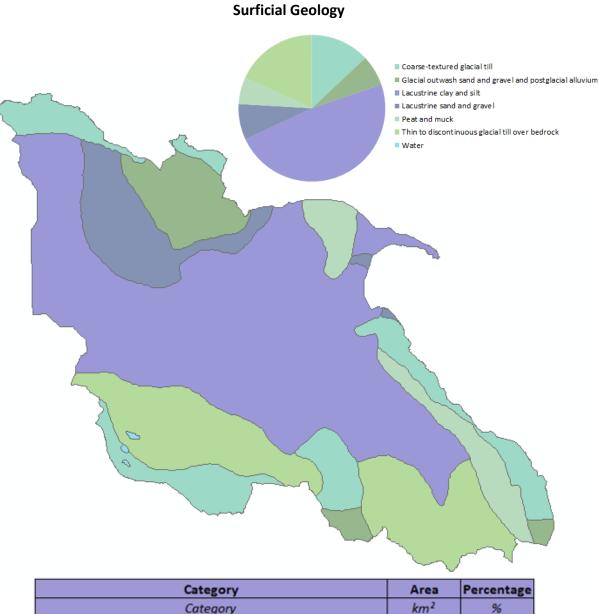

Category	Area	Percentage
Category	km²	%
Artificial fill	3.72	0.53%
Clay, Silt, and Muck	62.51	8.93%
Silt, Sand, and Gravel	620.73	88.69%
Water	12.92	1.85%
Total Watershed Area	699.89	100.00%

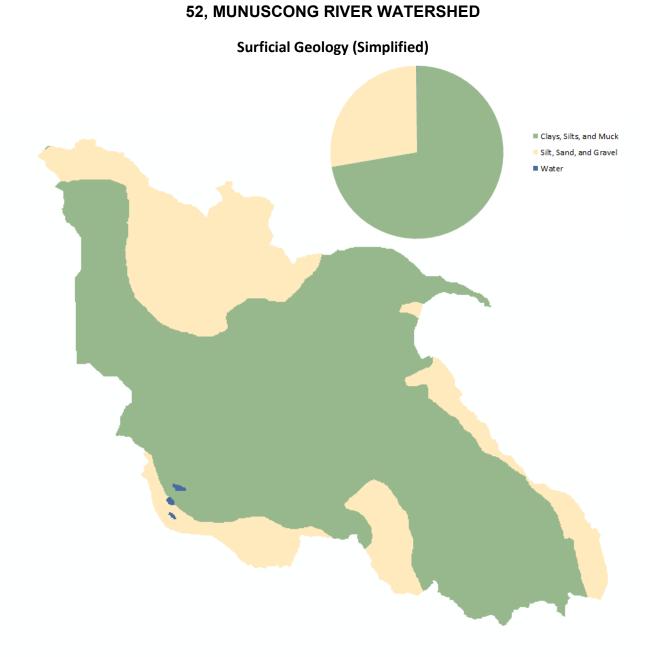
Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

USACE's National Inventory of Dams				
NIDID Dam Name Longitude Latitude				
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI02213	SYLVESTER CREEK DAM	-84.405800	46.181400	
MI01173	Christian Service Brigade Camp Dam	-84.326670	46.106670	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

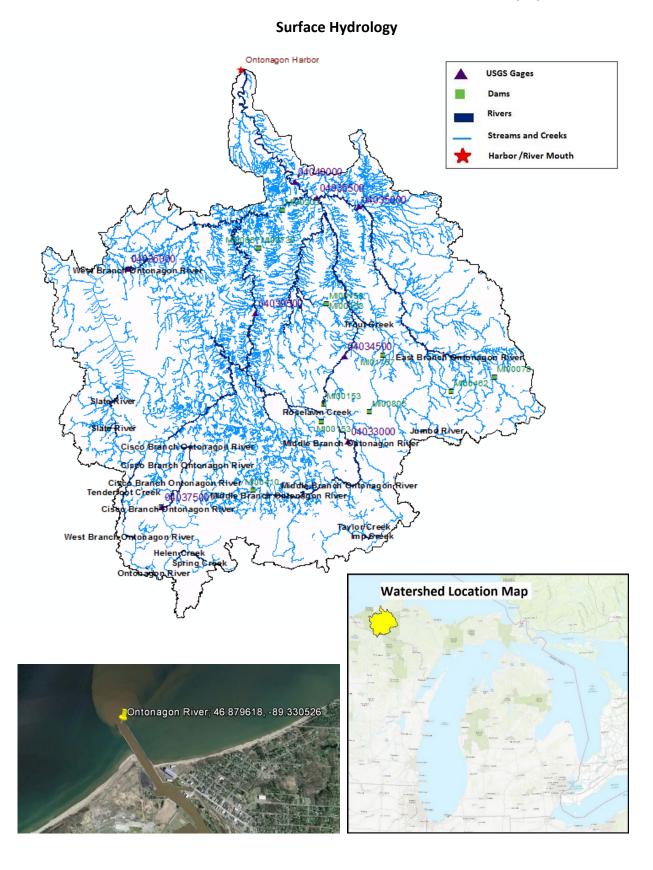
52, MUNUSCONG RIVER WATERSHED


All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

52, MUNUSCONG RIVER WATERSHED

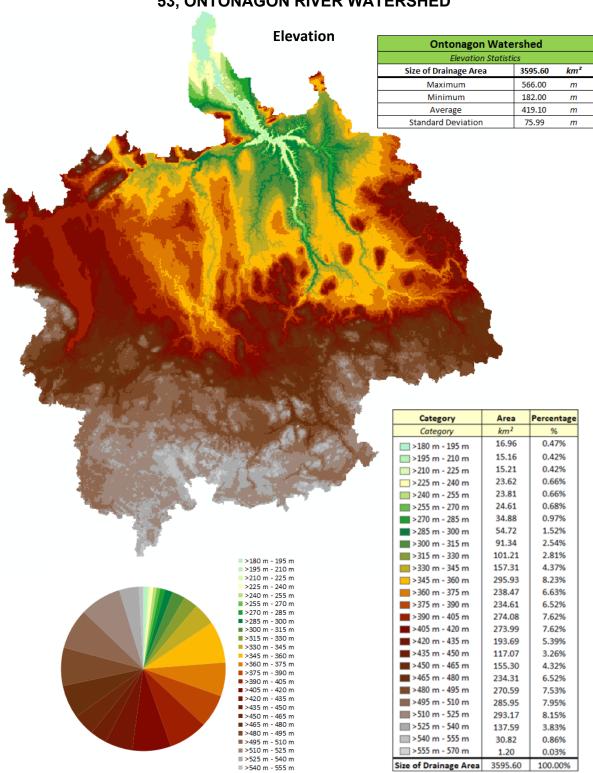
Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	62.98	12.98%
Glacial outwash sand and gravel and postglacial alluvium	32.78	6.76%
Lacustrine clay and silt	234.46	48.31%
Lacustrine sand and gravel	38.18	7.87%
Peat and muck	28.60	5.89%
Thin to discontinuous glacial till over bedrock	87.77	18.09%
Water	0.50	0.10%
Total Watershed Area	485.27	100.00%


Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

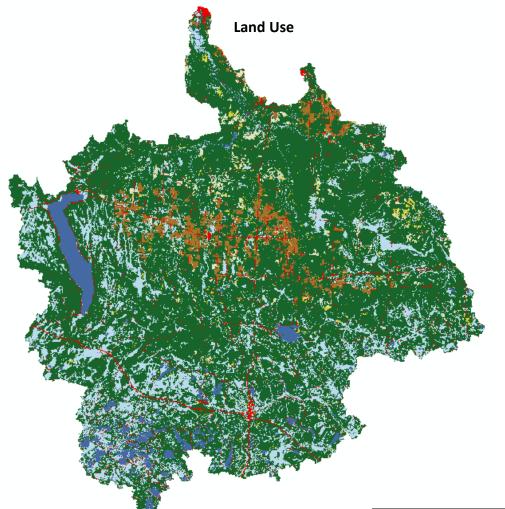
Percentage Category Area Category km² % 350.83 72.30% Clay, Silt, and Muck Silt, Sand, and Gravel 133.95 27.60% Water 0.50 0.10% **Total Watershed Area** 485.27 100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

475

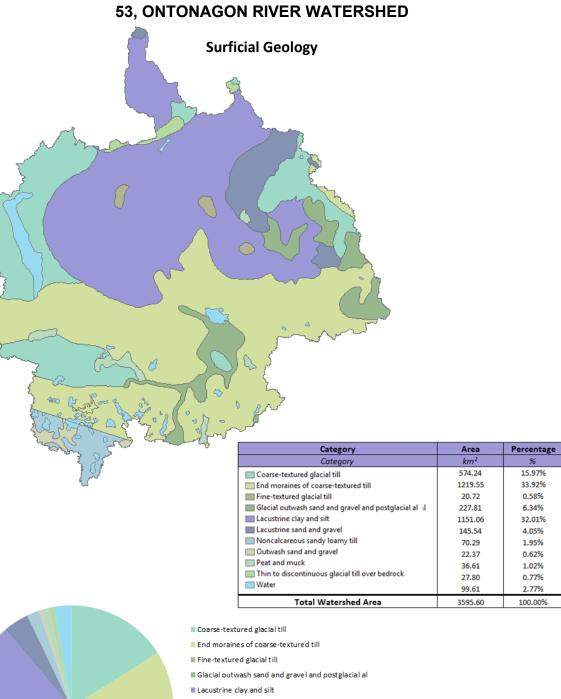

APPENDIX GGG. ONTONAGON RIVER WATERSHED (53)

Dam Information and USGS Streamgages

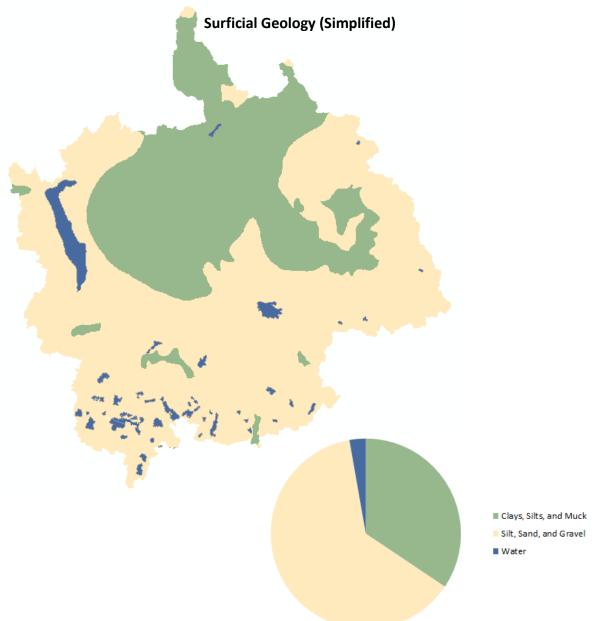

USACE's National Inventory of Dams (NID)					
National ID	Official Name	Decimal Degrees	Decimal Degrees		
MI00153	Bond Falls Main Dam	-89.129200	46.408000		
MI00153	Bond Falls Auxiliary Dike	-89.133300	46.550000		
MI00153	Bond Falls Control Dam	-89.133300	46.383300		
MI00153	Bond Falls Sand Lake Dike	-89.133300	46.383300		
MI00153	Bond Falls South Auxiliary Dike	-89.133300	46.550000		
MI00203	Victoria	-89.230000	46.680000		
MI00052	Cisco	-89.452100	46.253100		
MI01757	Trout Creek Dam	-89.013340	46.480000		
MI00028	Bergland Dam	-89.541660	46.586670		
MI00410	Wolf Lake Dam	-89.266670	46.283330		
MI00462	Nordine Dam	-88.871670	46.433330		
MI00667	Kitchin Dam	-89.275000	46.625000		
MI00730	Dills Dam	-89.277660	46.624250		
MI00078	Lower Dam	-88.783330	46.455000		
MI00805	Calderwood Walleye Pond Dam	-89.035840	46.400000		

USGS Stream Gage's					
STA ID	Station Name	Longitude	Latitude	Active	
4033000	MIDDLE BRANCH ONTONAGON RIVER NEAR PAULDING, MI	-89.077362	46.356892	yes	
4034500	MIDDLE BRANCH ONTONAGON RIVER NR TROUT CREEK, MI	-89.090419	46.477722	yes	
4035000	EAST BR ONTONAGON RIVER NEAR MASS, MI	-89.073473	46.68994		
4035500	MIDDLE BRANCH ONTONAGON RIVER NEAR ROCKLAND, MI	-89.160141	46.699107	yes	
4036000	WEST BRANCH ONTONAGON RIVER NEAR BERGLAND, MI	-89.54182	46.587447	yes	
4037500	CISCO BRANCH ONTONAGON R AT CISCO LAKE OUTLET, MI	-89.451536	46.253282	yes	
4039500	SOUTH BRANCH ONTONAGON RIVER AT EWEN, MI	-89.277089	46.532722		
4040000	ONTONAGON RIVER NEAR ROCKLAND, MI	-89.207086	46.720774	yes	
Number of Active USGS Stream Gage's in Drainage Area (2009)			6		

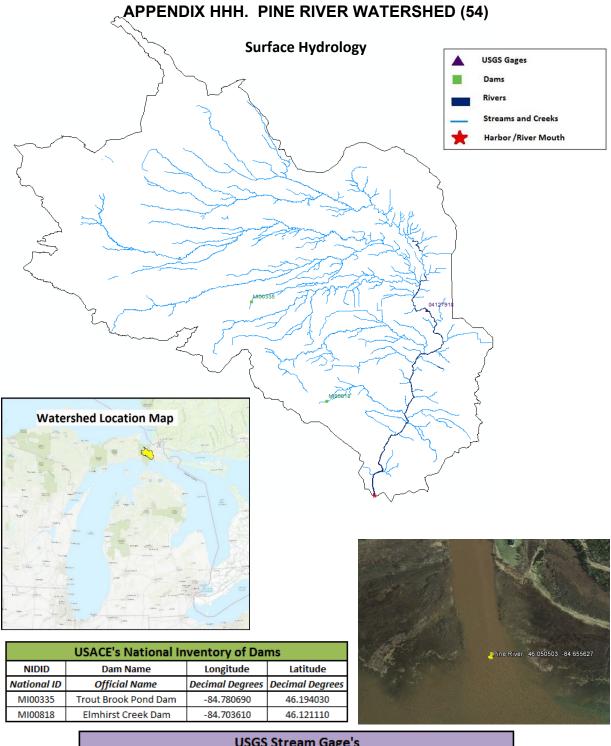
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950



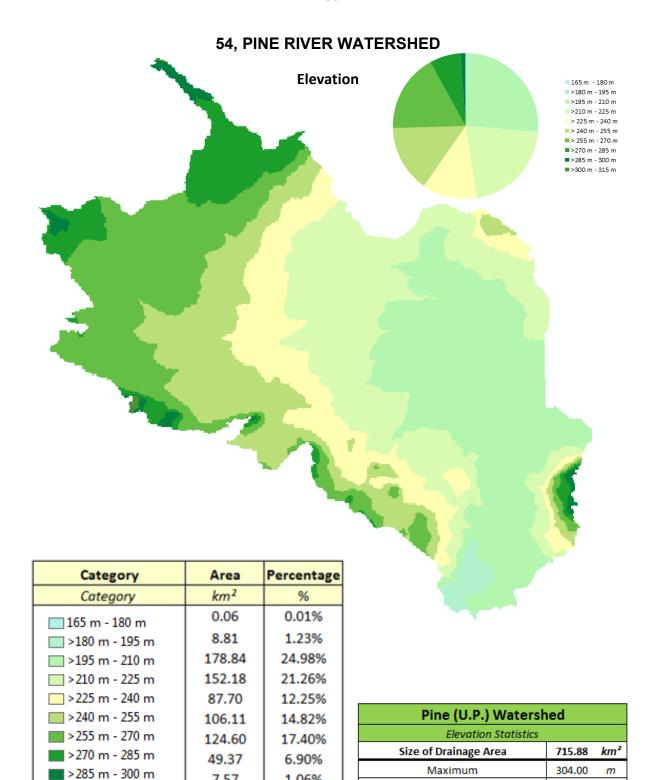
All Elevation Measurements with Respect to North American Datum 1983


	1		EGI	LE Runoff Curve Numbe
Category	Area	Percentage		71.4
Category	km²	%		
Water	149.41	4.16%		
Developed	93.52	2.60%		🔳 Water
Barren	2.53	0.07%		Developed
Forest	2481.00	69.00%		Barren
Shrubland	75.88	2.11%		Forest
Grassland	42.87	1.19%		Grassland
Agriculture	123.92	3.45%		Agriculture
Wetlands	626.46	17.42%		Wetlands
Total	3595.60	100.00%		

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


- Lacustrine sand and gravel
- Noncalcareous sandy loamy till
- Outwash sand and gravel
- Peat and muck
- Thin to discontinous glacial till over bedrock
- Water

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States and 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	1236.20	34.38%
Silt, Sand, and Gravel	2259.80	62.85%
Water	99.61	2.77%
Total Watershed Area	3595.60	100.00%

Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States and 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4127918	PINE RIVER NEAR RUDYARD, MI	-84.597826	46.185851	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)				

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

483

All Elevation Measurements with Respect to North American Datum 1983

Minimum

Average

Standard Deviation

178.00

232.28

26.06

m

m

m

1.06%

0.09%

100.00%

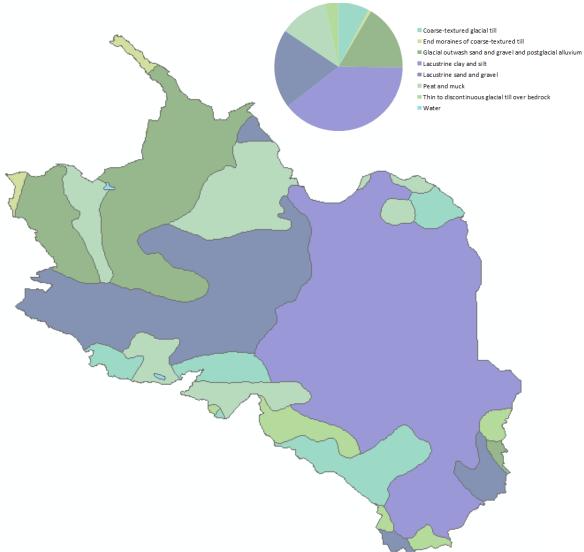
7.57


0.65

715.88

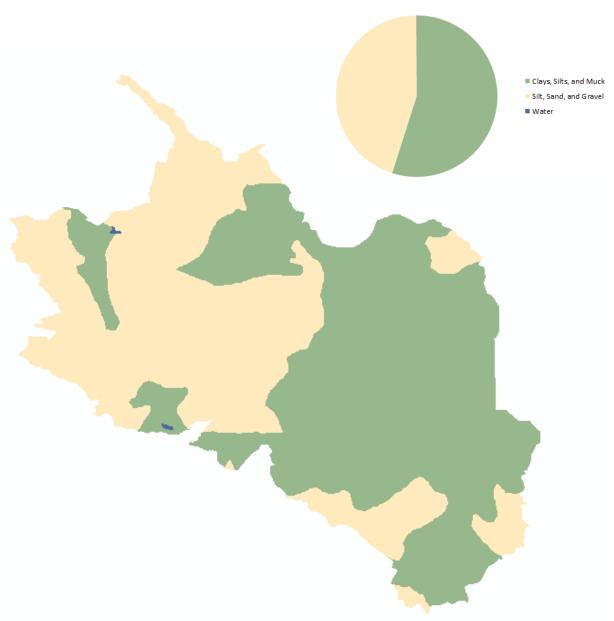
>300 m - 315 m

Size of Drainage Area


54, PINE RIVER WATERSHED

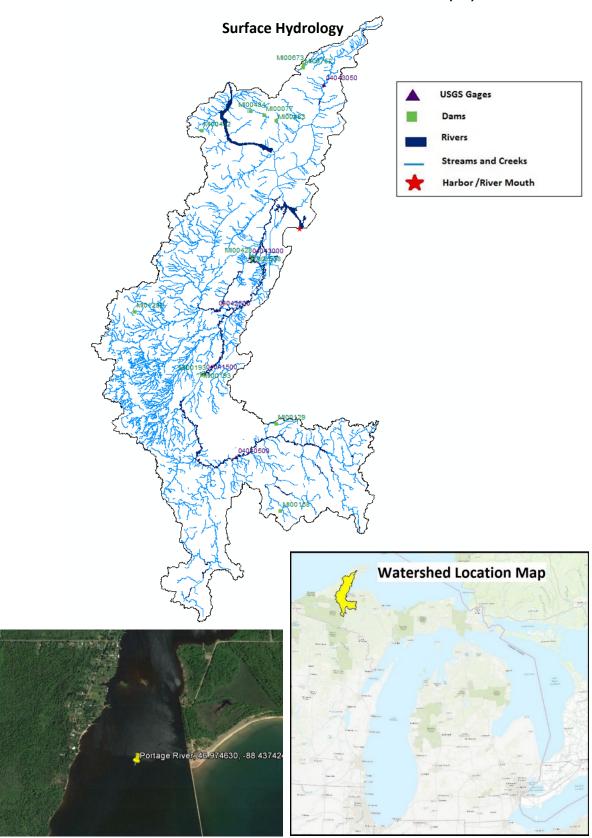
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

54, PINE RIVER WATERSHED


Category	Area	Percentage
Category	km²	%
Coarse-textured glacial till	55.87	7.80%
End moraines of coarse-textured till	4.79	0.67%
Glacial outwash sand and gravel and postglacial alluvium	119.56	16.70%
Lacustrine clay and silt	281.62	39.34%
Lacustrine sand and gravel	142.13	19.85%
Peat and muck	88.29	12.33%
Thin to discontinuous glacial till over bedrock	23.16	3.23%
Water	0.46	0.06%
Total Watershed Area	715.88	100.00%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

485


54, PINE RIVER WATERSHED

Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	393.07	54.91%
Silt, Sand, and Gravel	322.36	45.03%
Water 📰	0.46	0.06%
Total Watershed Area	715.88	100.00%

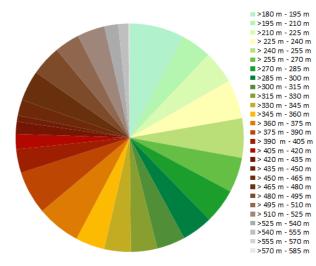
Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

APPENDIX III. PORTAGE RIVER WATERSHED (55)

55, PORTAGE RIVER WATERSHED

Dam Information and USGS Streamgages

USACE's National Inventory of Dams				
NIDID	Dam Name Longitude		Latitude	
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI00193	Prickett	-88.668300	46.724400	
MI00193	Prickett Intake & Powerhouse	-88.662300	46.726000	
MI01283	Pike Lake Dam	-88.841110	46.828940	
MI00129	Ford Dam	-88.479110	46.644620	
MI00158	Carp Intake Dam	-88.461130	46.494910	
MI02538	Otter Lake Diversion Dam	-88.551670	46.923050	
MI00412	Kissam Dam	-88.689100	47.143400	
MI00428	Otter Lake Dam	-88.553610	46.929720	
MI00483	Gooseneck Creek Dam	-88.503330	47.165000	
MI00484	Vitton Dam	-88.566670	47.180000	
MI00673	Homestake Copper Dam	-88.438330	47.263330	
MI00752	Calumet Dam	-88.440000	47.256670	
MI00077	Boston Pond Dam	-88.533330	47.173330	

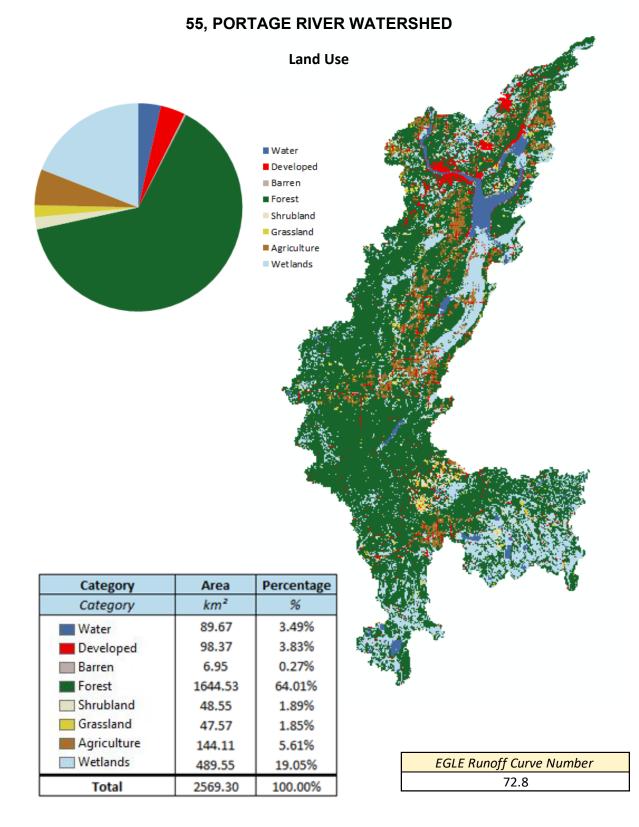

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4040500	STURGEON RIVER NEAR SIDNAW, MI	-88.575970	46.584106	yes
4041500	STURGEON RIVER NEAR ALSTON, MI	-88.662079	46.726323	yes
4042500	OTTER RIVER NR ELO, MI	-88.636798	46.835765	
4043000	STURGEON RIVER NR ARNHEIM, MI	-88.556517	46.928263	
4043050	TRAP ROCK RIVER NEAR LAKE LINDEN, MI	-88.385393	47.228536	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			3	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

55, PORTAGE RIVER WATERSHED

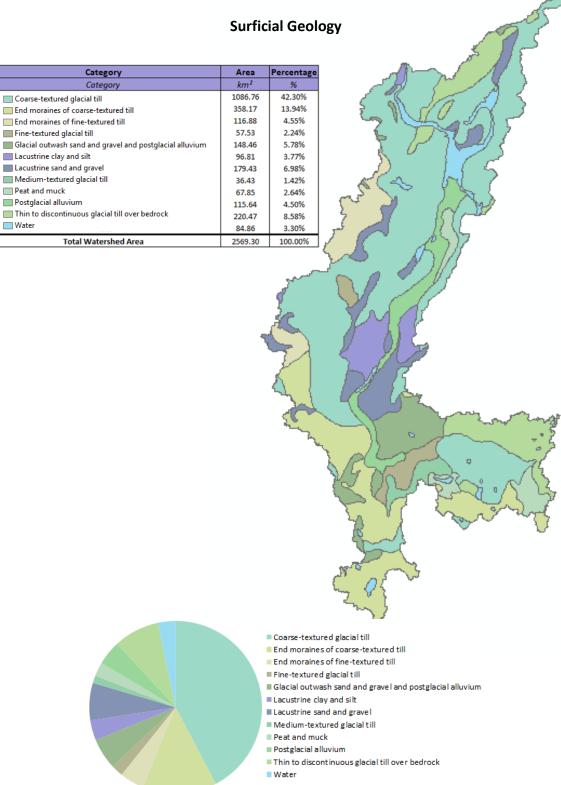
Elevation

Category Area Percentage km² Category % 199.14 7.75% >180 m - 195 m >195 m - 210 m 111.02 4.32% 📃 >210 m - 225 m 119.34 4.64% 🔁 >225 m - 240 m 142.40 5.54% 🔜 >240 m - 255 m 143.25 5.58% >255 m - 270 m 127.60 4.97% **>**270 m - 285 m 126.18 4.91% >285 m - 300 m 112.17 4.37% >300 m - 315 m 103.08 4.01% 🔜 >315 m - 330 m 96.09 3.74% 🔜 >330 m - 345 m 96.81 3.77% 🔜 >345 m - 360 m 106.07 4.13% **= >**360 m - 375 m 159.10 6.19% 📕 > 375 m - 390 m 157.43 6.13% >390 m - 405 m 85.68 3.33% >405 m - 420 m 55.28 2.15% >420 m - 435 m 44.38 1.73% 📕 >435 m - 450 m 22.77 0.89% >450 m - 465 m 57.65 2.24% >465 m - 480 m 110.19 4.29% 📕 >480 m - 495 m 110.25 4.29% >495 m - 510 m 91.35 3.56% 📰 >510 m - 525 m 100.15 3.90% 🔜 >525 m - 540 m 50.52 1.97% 🔲 >540 m - 555 m 35.34 1.38% 🔲 >555 m - 570 m 5.02 0.20% 🖂 >570 m - 585 m 1.05 0.04%

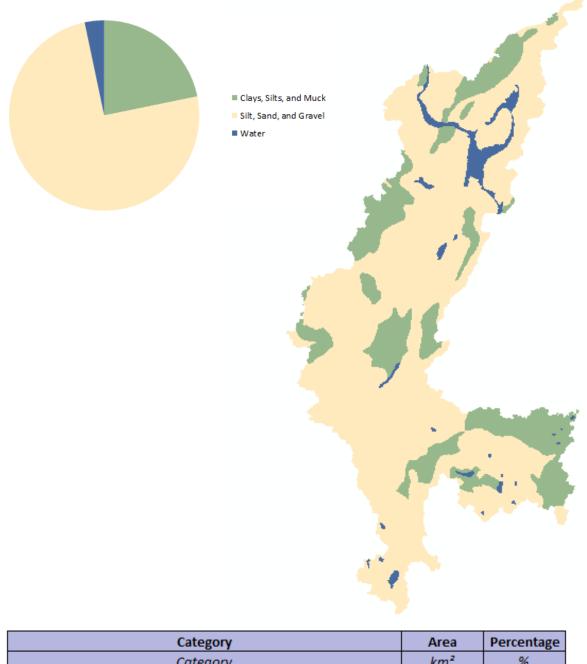

2569.30

100.00%

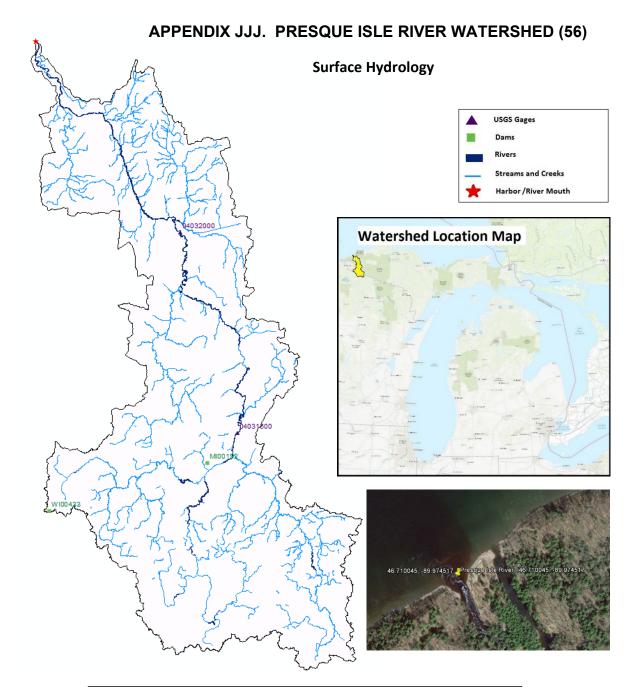
Size of Drainage Area


Portage Watershed				
Elevation Statistics	Elevation Statistics			
Size of Drainage Area	2569.30	km²		
Maximum	579.00	m		
Minimum	183.00	m		
Average	339.22	m		
Standard Deviation	106.42	m		

All Elevation Measurements with Respect to North American Datum 1983

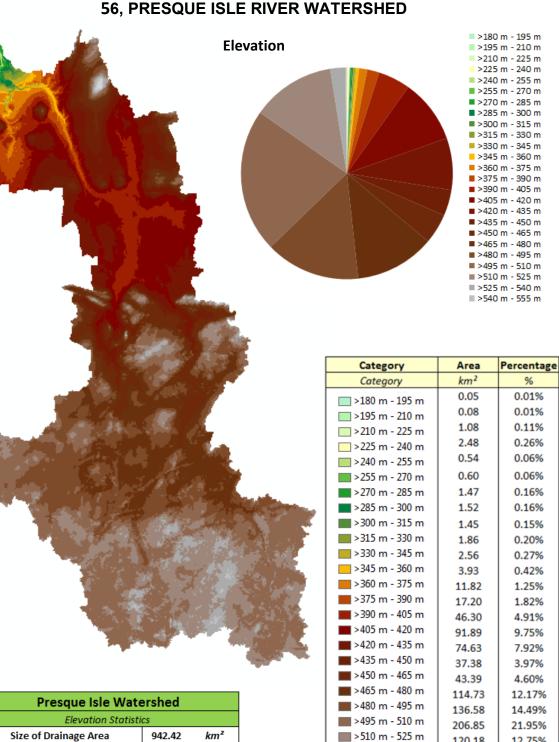

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

55, PORTAGE RIVER WATERSHED



55, PORTAGE RIVER WATERSHED

Surficial Geology (Simplified)


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	559.54	21.78%
Silt, Sand, and Gravel	1924.90	74.92%
Water	84.86	3.30%
Total Watershed Area	2569.30	100.00%

USACE's National Inventory of Dams (NID)			
NIDID Dam Name Longitude Latitude			
National ID	Official Name	Decimal Degrees	Decimal Degrees
WI00433	MCFADYEN	-89.927360	46.295670
MI00192	Presque Isle Wildlife Dam	-89.728330	46.345000

USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4031500	PRESQUE ISLE RIVER AT MARENISCO, MI	-89.692379	46.372170	
4032000	PRESQUE ISLE RIVER NEAR TULA, MI	-89.777385	46.546892	
Number of Active USGS Stream Gage's in Drainage Area (2009)			0	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

Presque Isle Watershed			
Elevation Statistics			
Size of Drainage Area 942.42 km ²			
Maximum	570.29	m	
Minimum	183.94	m	
Average	468.15	m	
Standard Deviation	47.69	m	

All Elevation Measurements with Respect to North American Datum 1983

120.18

21.92

1.53

0.40

942.42

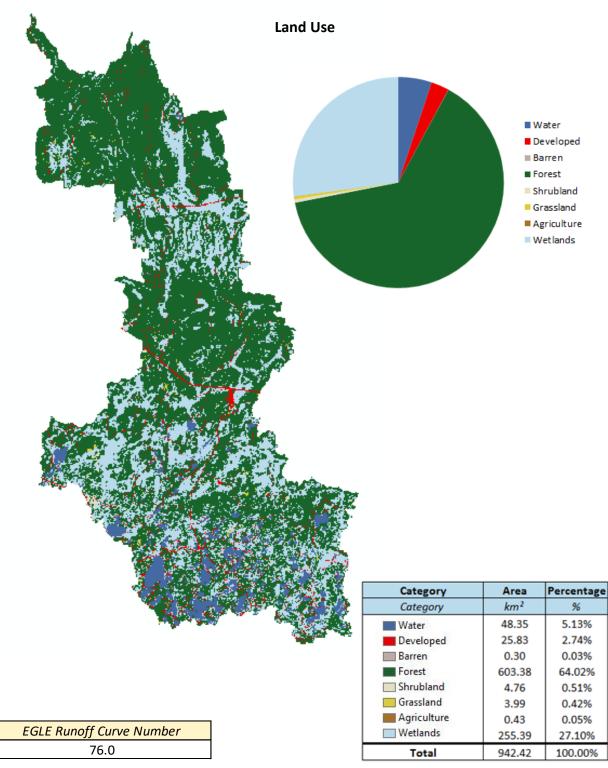
🔲 >525 m - 540 m

🔲 >540 m - 555 m

🔲 >555 m - 570 m

Size of Drainage Area

12.75%


2.33%

0.16%

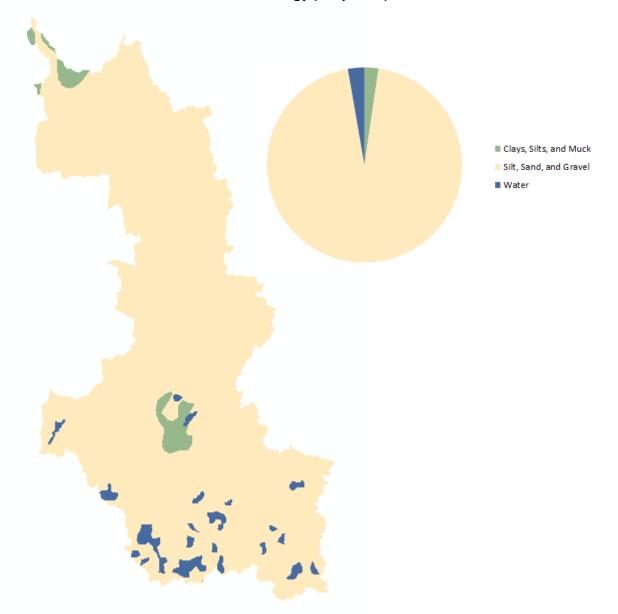
0.04%

100.00%

494

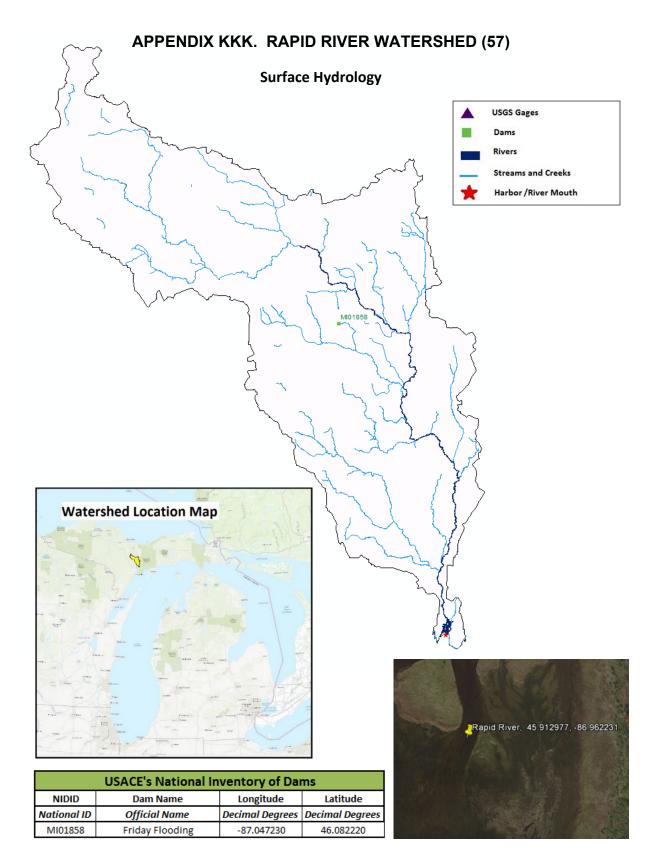
56, PRESQUE ISLE RIVER WATERSHED

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend 496

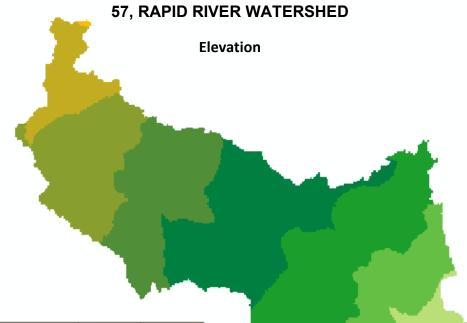


Category	Area	Percentage
Category	km ²	%
Lake silt and clay	7.47	0.79%
Noncalcareous sandy loamy till	764.87	81.16%
Outwash sand and gravel	130.20	13.82%
Peat and muck	14.19	1.51%
Water	25.69	2.73%
Total Watershed Area	942.42	100.00%

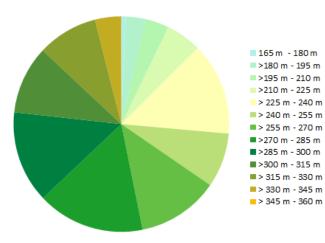
Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States


56, PRESQUE ISLE RIVER WATERSHED

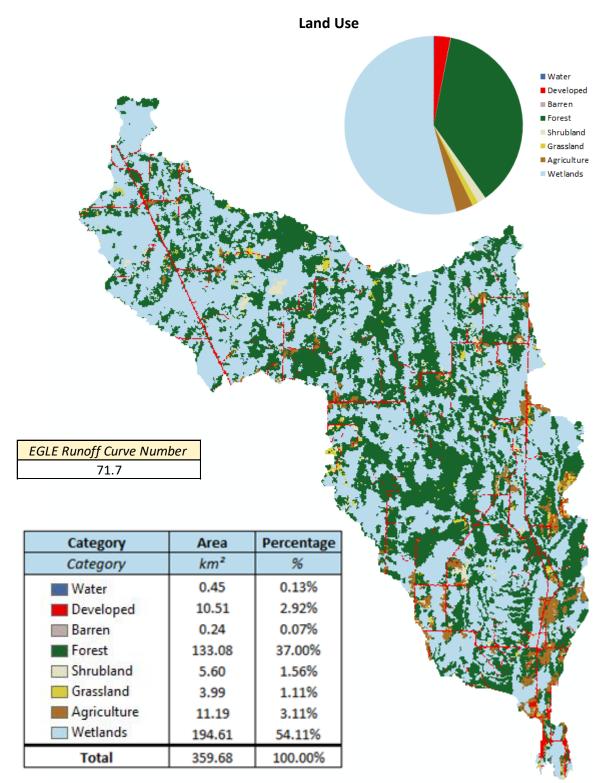
Surficial Geology (Simplified)

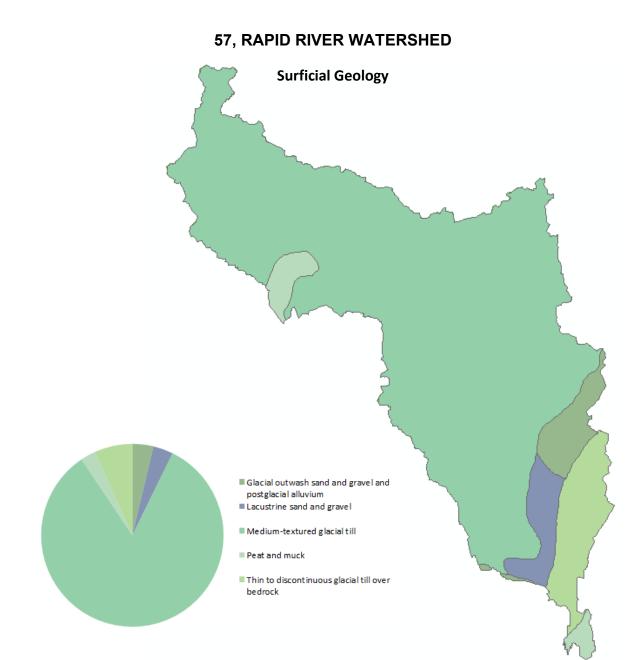


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	21.66	2.30%
Silt, Sand, and Gravel	895.08	94.98%
Water	25.69	2.73%
Total Watershed Area	942.42	100.00%


Data Obtained from United States Geological Survey Surficial Geology Map of the Conterminous United States

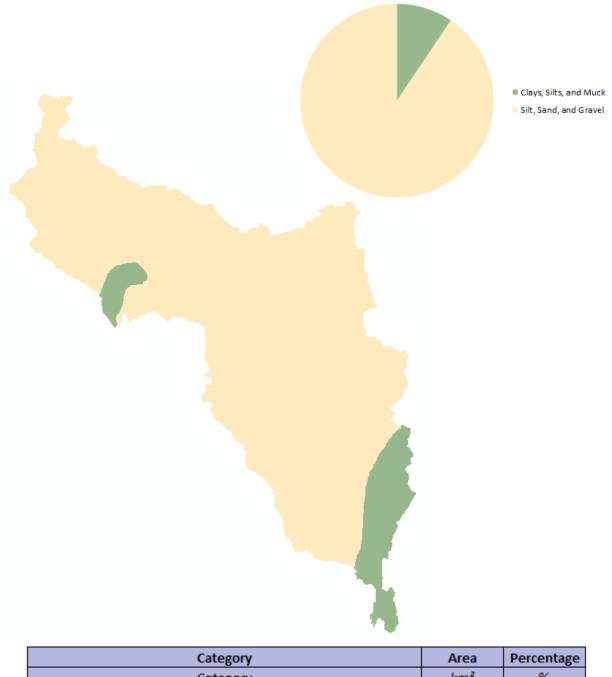
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950


Category	Area	Percentage
Category	km ²	%
🔲 165 m - 180 m	2.36	0.66%
🔲 >180 m - 195 m	10.72	2.98%
🔲 >195 m - 210 m	12.69	3.53%
🔲 >210 m - 225 m	19.26	5.35%
🔁 >225 m - 240 m	50.01	13.90%
🔲 >240 m - 255 m	29.35	8.16%
>255 m - 270 m	44.04	12.24%
>270 m - 285 m	58.00	16.13%
🔳 >285 m - 300 m	49.65	13.80%
>300 m - 315 m	36.79	10.23%
>315 m - 330 m	32.62	9.07%
📕 >330 m - 345 m	13.99	3.89%
> 345 m - 360 m	0.21	0.06%
Size of Drainage Area	359.68	100.00%


Rapid Watershed			
Elevation Statistics			
Size of Drainage Area	359.68	km²	
Maximum	350.00	m	
Minimum	176.00	m	
Average	269.69	m	
Standard Deviation	38.44	m	

All Elevation Measurements with Respect to North American Datum 1983

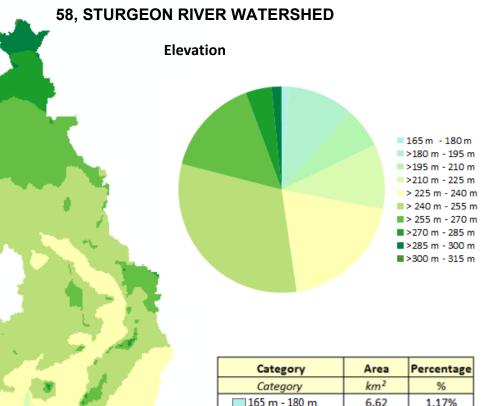
57, RAPID RIVER WATERSHED


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend


Category	Area	Percentage
Category	km ²	%
Glacial outwash sand and gravel and postglacial alluvium	13.40	3.73%
Lacustrine sand and gravel	12.74	3.54%
Medium-textured glacial till	299.66	83.31%
Peat and muck	9.61	2.67%
Thin to discontinuous glacial till over bedrock	24.26	6.74%
Total Watershed Area	359.68	100.00%

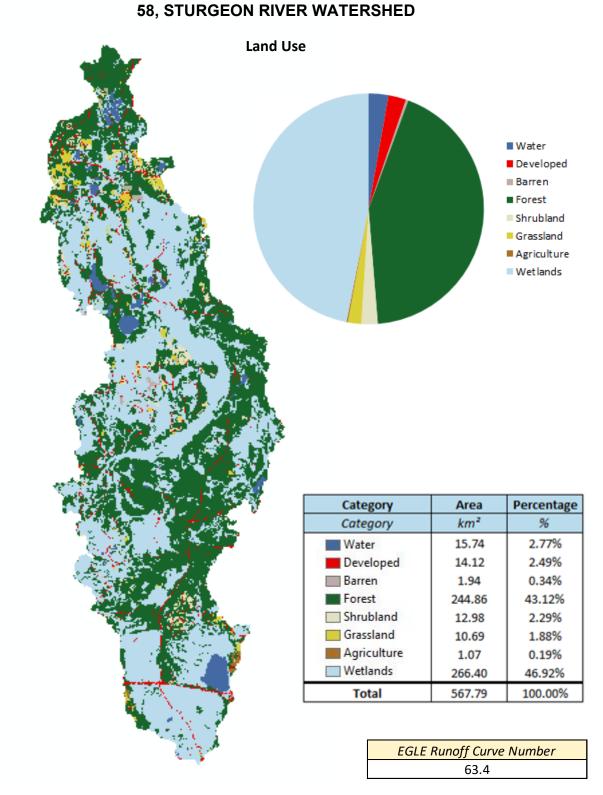
57, RAPID RIVER WATERSHED

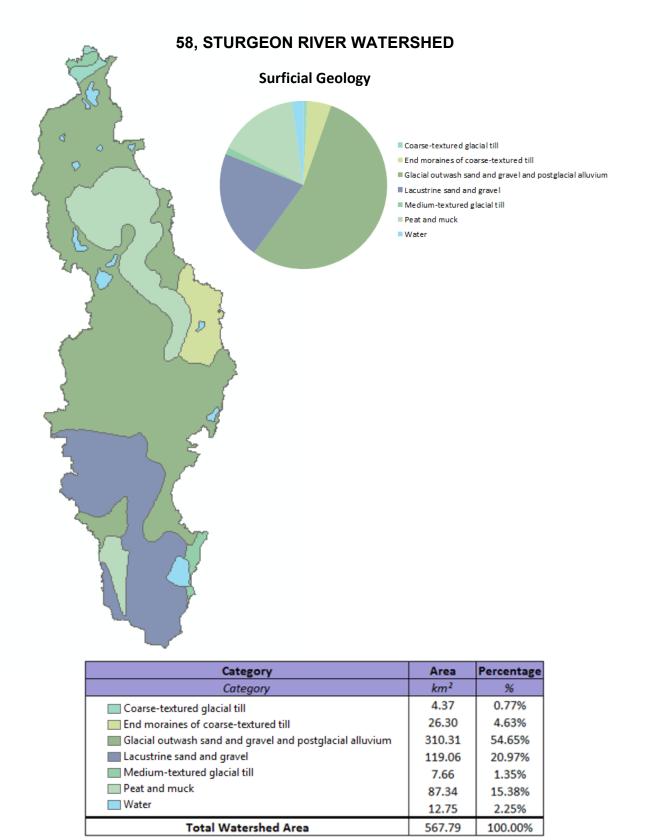
Surficial Geology (Simplified)


Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	33.87	9.42%
Silt, Sand, and Gravel	325.81	90.58%
Total Watershed Area	359.68	100.00%

APPENDIX LLL. STURGEON RIVER WATERSHED (58)

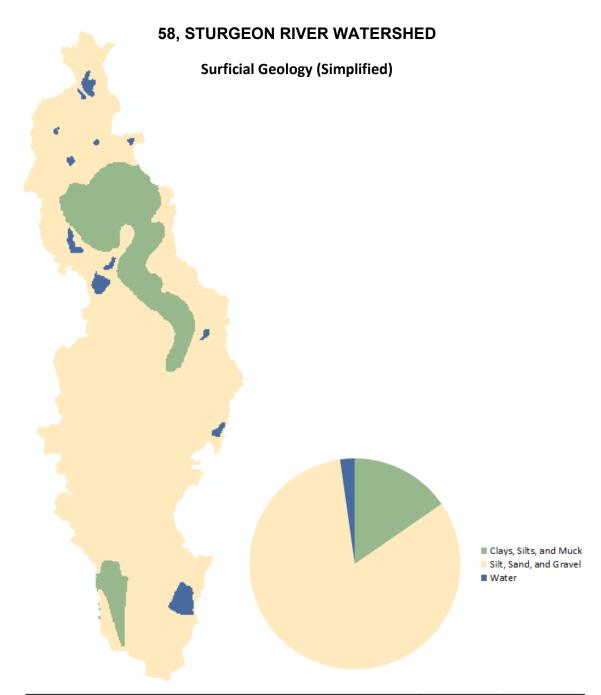
USGS Stream Gage's				
STA ID	Station Name	Longitude	Latitude	Active
4057510	STURGEON RIVER NEAR NAHMA JUNCTION, MI	-86.705700	45.943024	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

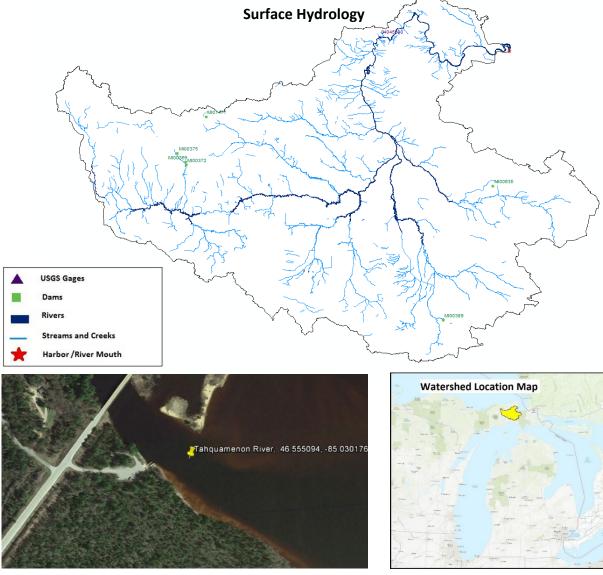

Category	Area	Percentage
Category	km²	%
🔲 165 m - 180 m	6.62	1.17%
🔲 >180 m - 195 m	59.22	10.43%
🔲 >195 m - 210 m	35.52	6.26%
🔲 >210 m - 225 m	57.78	10.18%
─ >225 m - 240 m	111.63	19.66%
≥240 m - 255 m	177.93	31.34%
>255 m - 270 m	87.12	15.34%
>270 m - 285 m	23.01	4.05%
>285 m - 300 m	8.81	1.55%
>300 m - 315 m	0.14	0.02%
Size of Drainage Area	567.79	100.00%

Sturgeon Watershed			
Elevation Statistics			
Size of Drainage Area	567.79	km²	
Maximum	304.00	m	
Minimum	176.00	m	
Average	234.56	m	
Standard Deviation	25.28	m	

All Elevation Measurements with Respect to North American Datum 1983



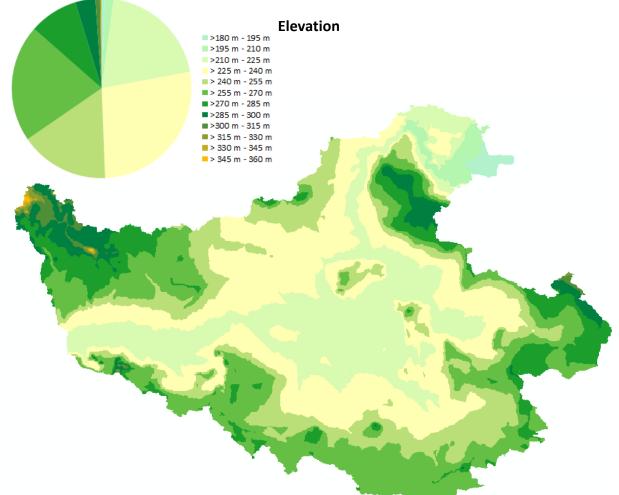
Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend



Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

506

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	87.34	15.38%
Silt, Sand, and Gravel	467.70	82.37%
Water	12.75	2.25%
Total Watershed Area	567.79	100.00%

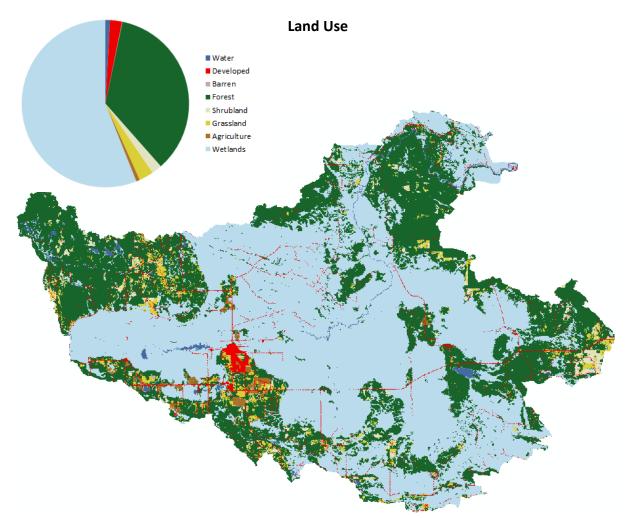


APPENDIX MMM. TAHQUAMENON RIVER WATERSHED (60)

USACE's National Inventory of Dams			
NIDID Dam Name Longitude Latitude			Latitude
National ID	Official Name	Decimal Degrees	Decimal Degrees
MI00635	SENEY A-2 POOL DAM	-85.063890	46.383340
MI01477	Halfway Lake Dam	-85.591670	46.475000
MI00369	Brockies Pond Dam	-85.629930	46.417260
MI00372	Buckies Pond Dam	-85.629040	46.413760
MI00375	Silver Creek Trout Pond Dam	-85.645000	46.428330
MI00389	Fibron Trout Pond Dam	-85.158330	46.213330

USGS Stream Gage's				
STA ID Station Name Longitude Latitude Active				Active
4045500	TAHQUAMENON RIVER NEAR PARADISE, MI	-85.269555	46.575015	yes
Number of Active USGS Stream Gage's in Drainage Area (2009)			1	

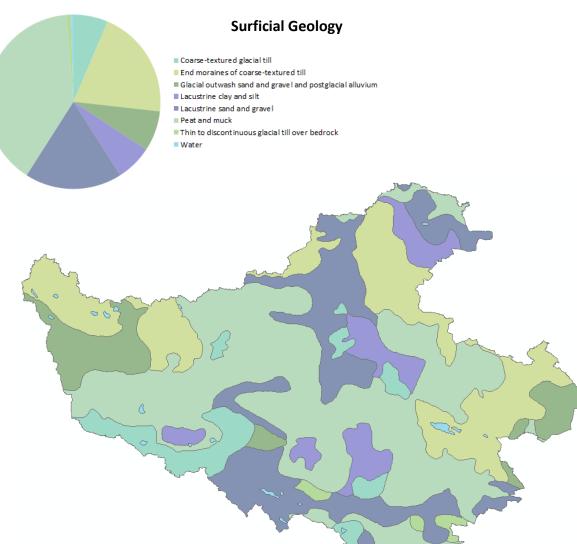
Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

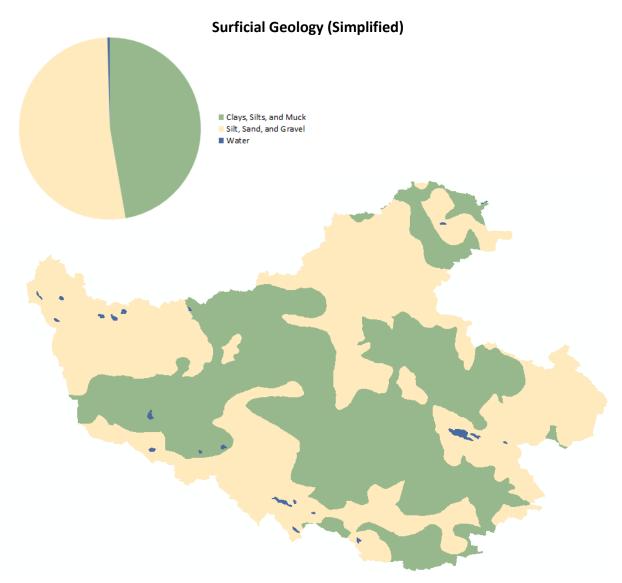


Category	Area	Percentage
Category	km²	%
>180 m - 195 m	12.63	0.60%
>195 m - 210 m	31.80	1.52%
>210 m - 225 m	418.14	19.94%
─ >225 m - 240 m	573.33	27.34%
≥240 m - 255 m	335.92	16.02%
>255 m - 270 m	441.81	21.07%
≥270 m - 285 m	184.22	8.78%
>285 m - 300 m	75.72	3.61%
>300 m - 315 m	17.36	0.83%
>315 m - 330 m	3.84	0.18%
>330 m - 345 m	1.63	0.08%
>345 m - 360 m	0.74	0.04%
Size of Drainage Area	2097.14	100.00%

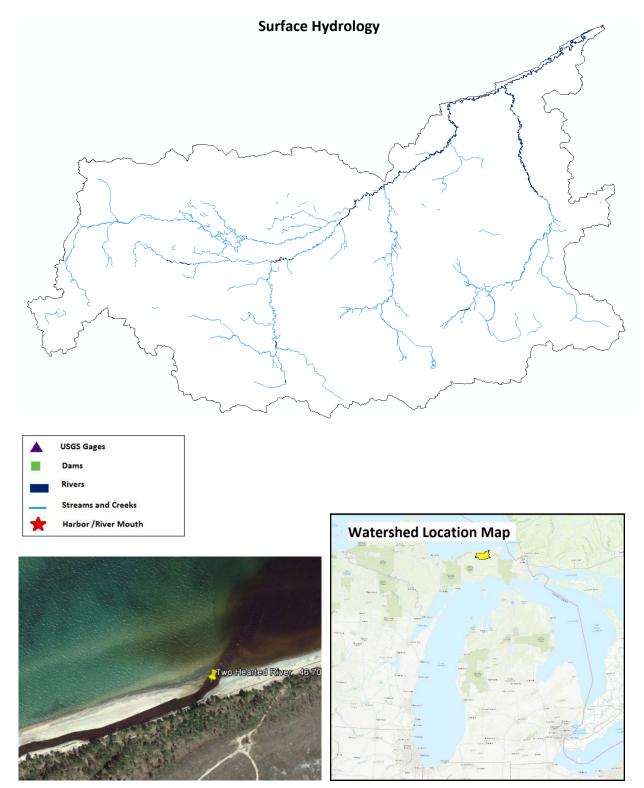
Tahquamenon Watershed			
Elevation Statistics			
Size of Drainage Area	2097.14	km²	
Maximum	354.00	m	
Minimum	183.00	m	
Average	244.44	m	
Standard Deviation	22.13	m	

All Elevation Measurements with Respect to North American Datum 1983


509


Category	Area	Percentage
Category	km²	%
Water	18.64	0.89%
Developed	48.91	2.33%
Barren	1.50	0.07%
Forest	737.91	35.19%
Shrubland	41.79	1.99%
Grassland	58.58	2.79%
Agriculture	15.00	0.72%
Wetlands	1174.81	56.02%
Total	2097.14	100.00%

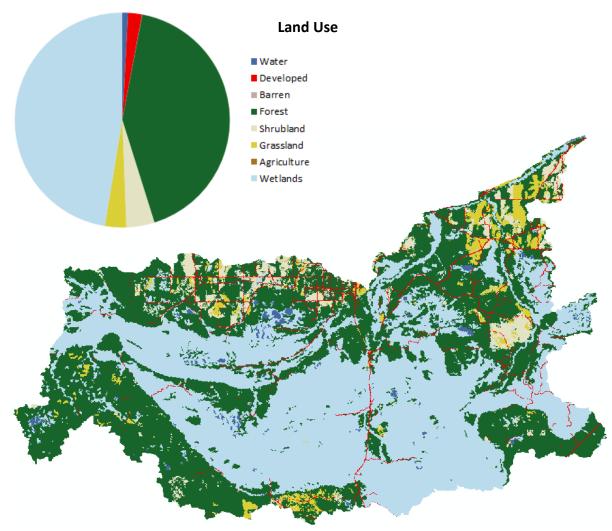
EGLE Runoff Curve Number	
68.3	


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	134.72	6.42%
End moraines of coarse-textured till	426.78	20.35%
Glacial outwash sand and gravel and postglacial alluvium	156.50	7.46%
Lacustrine clay and silt	140.97	6.72%
Lacustrine sand and gravel	378.99	18.07%
Peat and muck	831.47	39.65%
Thin to discontinuous glacial till over bedrock	18.49	0.88%
Water	9.22	0.44%
Total Watershed Area	2097.14	100.00%

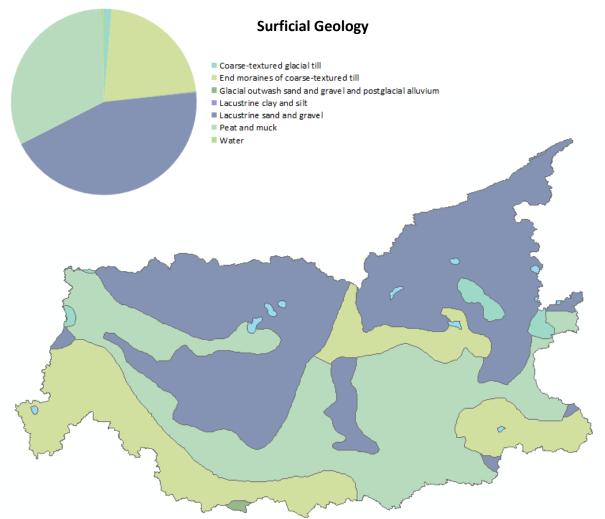
Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	990.93	47.25%
Silt, Sand, and Gravel	1096.99	52.31%
Water	9.22	0.44%
Total Watershed Area	2097.14	100.00%

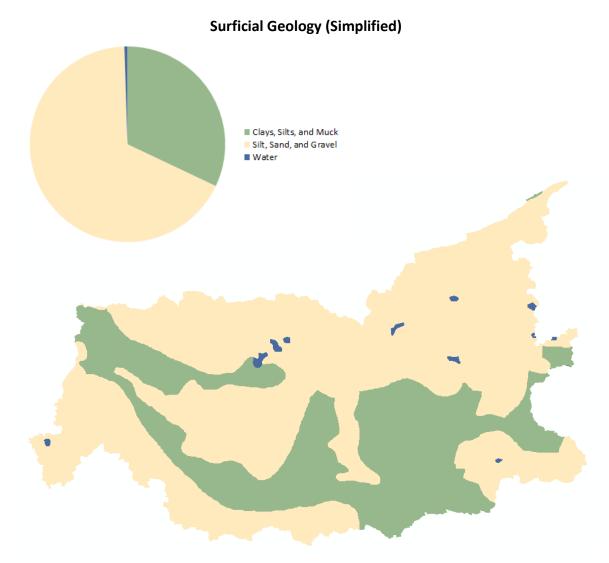
APPENDIX NNN. TWO HEARTED RIVER WATERSHED (61)


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages include only active gages and gages with 20+ years of discharge records since 1950

Category	Area	Percentage
Category	km²	%
>180 m - 195 m	1.68	0.31%
>195 m - 210 m	15.11	2.82%
>210 m - 225 m	37.69	7.03%
─>225 m - 240 m	212.13	39.57%
🔜 >240 m - 255 m	168.76	31.48%
🔲 >255 m - 270 m	34.08	6.36%
>270 m - 285 m	28.62	5.34%
>285 m - 300 m	31.93	5.96%
>300 m - 315 m	3.91	0.73%
📕 >315 m - 330 m	1.56	0.29%
🔜 >330 m - 345 m	0.51	0.10%
<mark> </mark>	0.16	0.03%
Size of Drainage Area	536.15	100.00%

Two Hearted Watershed			
Elevation Statistics			
Size of Drainage Area	536.15	km²	
Maximum	350.00	m	
Minimum	183.00	m	
Average	244.07	m	
Standard Deviation	20.28	m	


All Elevation Measurements with Respect to North American Datum 1983

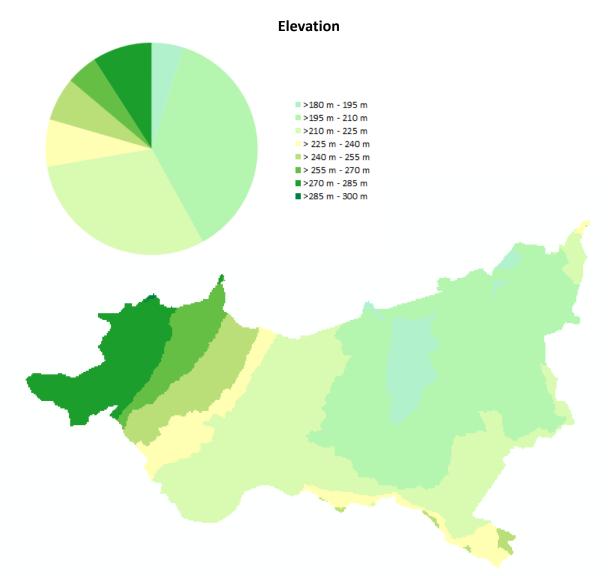

Category	Area	Percentage
Category	km²	%
Water	4.74	0.88%
Developed	11.13	2.08%
Barren	0.14	0.03%
Forest	226.13	42.18%
Shrubland	22.74	4.24%
Grassland	17.16	3.20%
Agriculture	0.00	0.00%
Wetlands	254.10	47.39%
Total	536.15	100.00%

EGLE Runoff Curve Number 66.8

Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

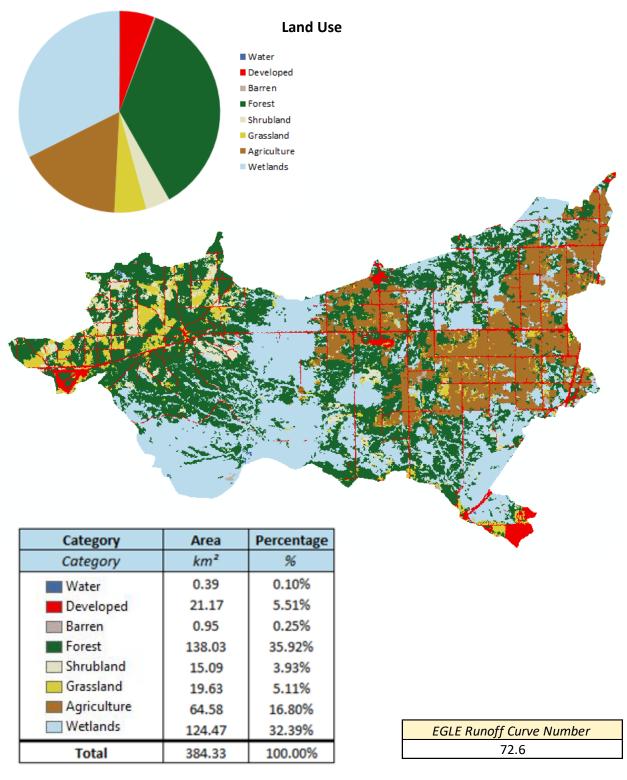


Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	7.29	1.36%
End moraines of coarse-textured till	116.96	21.82%
Glacial outwash sand and gravel and postglacial alluvium	0.82	0.15%
Lacustrine clay and silt	0.16	0.03%
Lacustrine sand and gravel	236.66	44.14%
Peat and muck	171.55	32.00%
Water Vater	2.70	0.50%
Total Watershed Area	536.15	100.00%

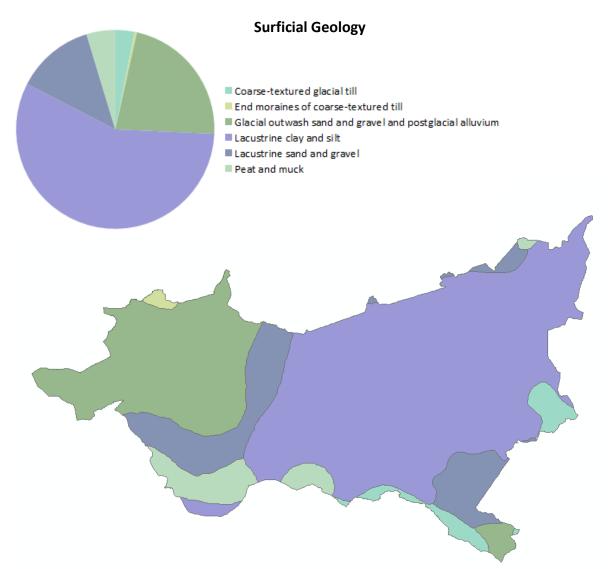

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	171.72	32.03%
Silt, Sand, and Gravel	361.73	67.47%
Water	2.70	0.50%
Total Watershed Area	536.15	100.00%

APPENDIX OOO. WAISKA RIVER WATERSHED (62)

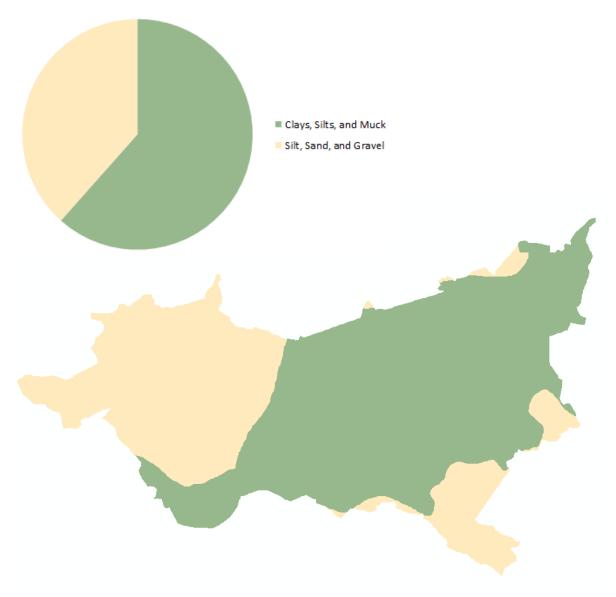
Surface Hydrology


Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

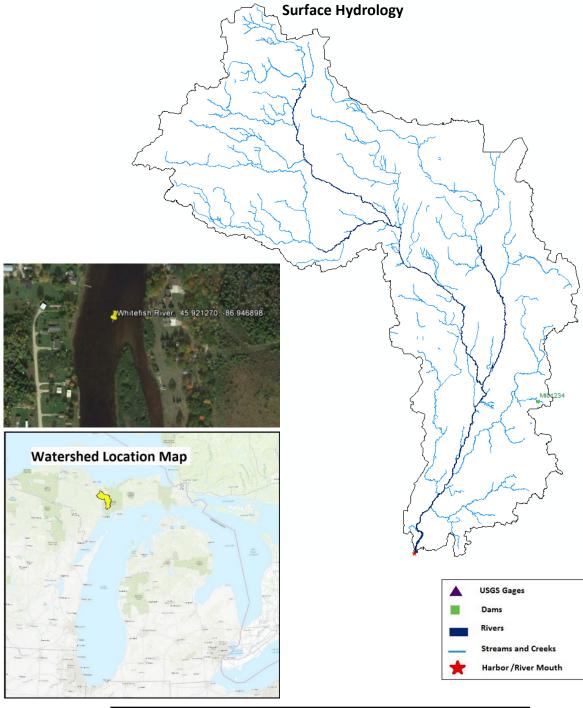
Category	Area	Percentage
Category	km²	%
>180 m - 195 m	18.64	4.85%
🔲 >195 m - 210 m	142.65	37.12%
🔲 >210 m - 225 m	116.47	30.30%
🔜 >225 m - 240 m	27.72	7.21%
🔜 >240 m - 255 m	25.54	6.65%
>255 m - 270 m	18.35	4.77%
>270 m - 285 m	34.80	9.06%
>285 m - 300 m	0.16	0.04%
Size of Drainage Area	384.33	100.00%


Waiska Watershed		
Elevation Statistics		
Size of Drainage Area	384.33	km²
Maximum	288.00	m
Minimum	183.00	m
Average	220.22	m
Standard Deviation	24.79	m

All Elevation Measurements with Respect to North American Datum 1983


Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

520



Category	Area	Percentage
Category	km ²	%
Coarse-textured glacial till	11.95	3.11%
End moraines of coarse-textured till	1.57	0.41%
Glacial outwash sand and gravel and postglacial alluvium	85.28	22.19%
Lacustrine clay and silt	218.55	56.87%
Lacustrine sand and gravel	48.91	12.73%
Peat and muck	18.07	4.70%
Total Watershed Area	384.33	100.00%

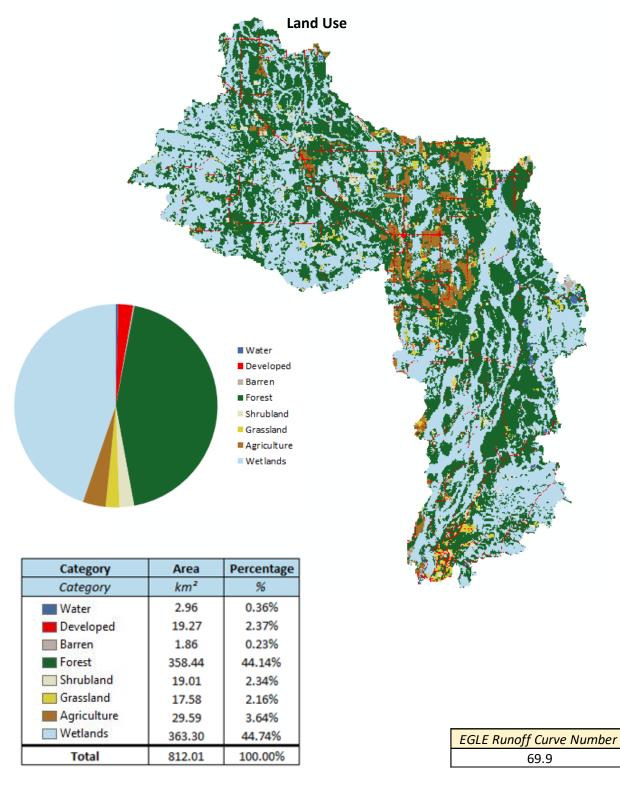
Surficial Geology (Simplified)

Category	Area	Percentage
Category	km²	%
Clay, Silt, and Muck	236.63	61.57%
Silt, Sand, and Gravel	147.70	38.43%
Total Watershed Area	384.33	100.00%

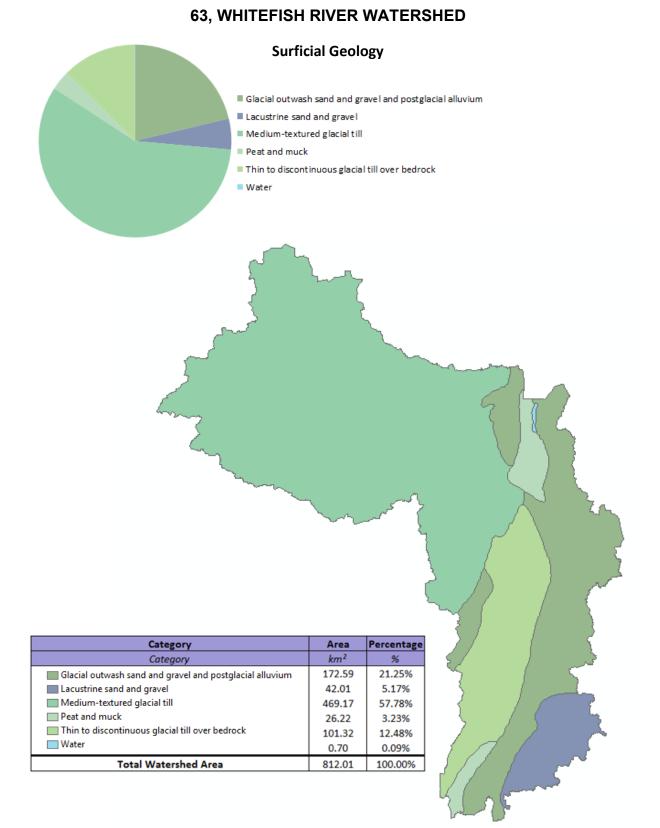
APPENDIX PPP. WHITEFISH RIVER WATERSHED (63)

USACE's National Inventory of Dams				
NIDID	NIDID Dam Name Longitude Latitude			
National ID	Official Name	Decimal Degrees	Decimal Degrees	
MI01234	Hamilton Marsh Dam	-86.805000	46.043330	

Data Obtained from USGS National Hydrography Dataset and National Inventory of Dams USGS Streamgages includes only active gages and gages with 20+ years of discharge records since 1950

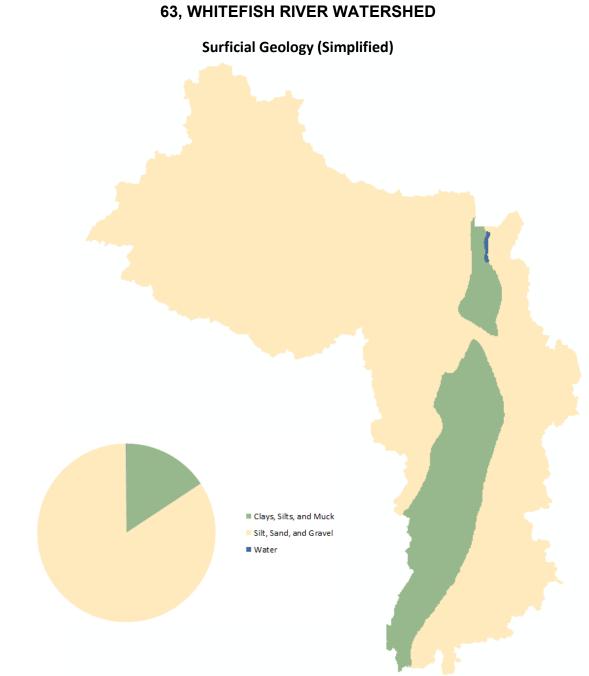

63, WHITEFISH RIVER WATERSHED

				Elev
Whitef	ish Wate	ersh	ed	
<i>Elevation Statistics</i> Size of Drainage Area			812.01	km²
Maximum			379.00	m
Minimum			176.00	m
Average			269.68	m
Standard Dev	lation		45.88	m
Catagory	A	Perro	ontra	
Category Category	Area km ²	rero	centage %	
165 m - 180 m	1.02	0	.13%	
>180 m - 180 m	30.34	1	.74%	
		1		
>195 m - 210 m >210 m - 225 m	45.40	5.59%		
	80.49	9.91%		
>225 m - 240 m	81.31	1	0.01%	
>240 m - 255 m	119.17	14.68%		
>255 m - 270 m	66.34	8.17%		
>270 m - 285 m	83.90	1	0.33%	
>285 m - 300 m	67.28	8	.29%	
>300 m - 315 m	56.34	6	.94%	
>315 m - 330 m	66.96	8.25%		
> 220 24E				
>330 m - 345 m	86.00	10	0.59%	
>345 m - 360 m		1	0.59%	
>345 m - 360 m >360 m - 375 m	86.00 27.22	3	.35%	
	86.00	3 0		


All Elevation Measurements with Respect to North American Datum 1983

165 m - 180 m >180 m - 195 m >195 m - 210 m >220 m - 225 m > 225 m - 240 m > 255 m - 270 m > 255 m - 270 m > 255 m - 300 m > 300 m - 315 m > 330 m - 345 m > 360 m - 375 m > 375 m - 390 m

63, WHITEFISH RIVER WATERSHED



Data Obtained from National Land Cover Database 2011 (NLCD2011) for the Conterminous United States Classifications Aggregated into 9 Land Use Categories in Accordance with Modified Anderson Land Use System Legend Color Scheme Adapted from NLCD 2011 Land Cover Classification Legend

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

526

CategoryAreaPercentageCategorykm²%Clay, Silt, and Muck127.5415.71%Silt, Sand, and Gravel683.7784.21%

Data Obtained by 1982 Quaternary Geology map of Michigan published by Michigan Department of Natural Resources

0.70

812.01

0.09%

100.00%

Water

Total Watershed Area

REFERENCES

- Ackers P and White WR. 1973. Sediment transport: New approach and analysis. American Society of Civil Engineers, Journal of the Hydraulics Division, Volume 99 (HY11).
- Alighalehbabakhani F, Miller CJ. Baskaran M, Selegean JP, Barkach JH, Sadatiyan SMA., Dahl T. 2017a. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed. Journal of Hydrology 555: 926-937.
- Alighalehbabakhani, F, Miller, CJ, Selegean, JP, Barkach, J, Sadatiyan SMA, Dahl, T., Baskaran, M. 2017b. Estimate of sediment trapping rates for two reservoirs in the Lake Erie watershed: Past and present scenarios. Journal of Hydrology 544: 147-155.
- American Society of Civil Engineers (ASCE). 1982. Relationships between morphology of small streams and sediment yields. ASCE Task Committee on Relations between Morphology of Small Streams and Sediment Yield of the Committee on Sedimentation of the Hydraulics Division. Journal of the Hydraulics Division, Volume 108 (HY11).
- Armijos E, Merten GH, Groten JT, Ellison CA, and Lisiecki LU. 2021. Performance of Bedload Sediment Transport Formulas Applied to the Lower Minnesota River.
 Journal of Hydrologic Engineering, Volume 26(7): 05021014

Bagnold RA. 1956. The Flow of Cohesionless Grains in Fluids. Philosophical Transactions of the Royal Society of London, Series A, Volume 249 (964).

- Baskaran, M, Nix J, Kuyper C, and Karunakara N. 2014. Problems with the dating of sediment core using excess 210Pbxs in a freshwater system impacted by large scale watershed changes. J. Environ. Radioact. Volume 138, pages 355-363.
- Baskaran M and Naidu AS. 1995. 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochim. Cosmochim. Acta, Volume 59, pages 4435-4448.
- Baskaran M., Miller CJ, Kumar A, Andersen E, Hui J, Selegean JP, Creech CT and
 Barkach JH. 2015. Sediment accumulation rates and sediment dynamics using
 five different methods in a well-constrained impoundment: Case study from
 Union Lake, Michigan. Journal of Great Lakes Research Volume 41, pages 607617.
- Beaver M. 2013. Aerial photograph of the Grand River at Lake Michigan taken by Marge Beaver, Photography-Plus, on April 23, 2013. Permission to use the photograph was provided by Photography-Plus, Muskegon, MI. <u>http://photography-plus.com/</u>.
- Bent PC. 1970. A proposed stream flow data program for Michigan. USGS, Lansing, Michigan. Open file report, pages 1-44.

- Bent PC. 1971. Influence of surface glacial deposits on streamflow characteristics. USGS, Lansing, Michigan. Open file report, pages 1-37.
- Biedenharn DS, Watson CC, and Thorne CR. 2008. Fundamentals of Fluvial
 Geomorphology. IN: Chapter 6, Sedimentation Engineering, Processes
 Measurement, Modeling, and Practice, edited by Marcelo H. Garcia, Ph.D.
 American Society of Civil Engineers, Practice No. 110. ASCE, Reston, Virginia.
- Borah DK, Drug EC, and Yoder D. 2008. Watershed Sediment Yield. IN: Chapter 17,
 Sedimentation Engineering, Processes Measurement, Modeling, and Practice,
 edited by Marcelo H. Garcia, Ph.D. American Society of Civil Engineers,
 Practice No. 110. ASCE, Reston, Virginia.
- Brooks KN, Folliott PF, and Magner JA. 2013. <u>Hydrology and the management of</u> <u>watersheds</u>. John Wiley & Sons, Inc., New York.
- Brown CB. 1943. Discussion of Sedimentation in Reservoirs. American Society of Civil Engineers, Volume 69, pages 793-815.
- Brune GM. 1953. Trap Efficiency of Reservoirs. American Geophysical Union. Volume 34(3).
- Charlton R. 2008. <u>Fundamentals of Fluvial Geomorphology</u>. Routledge, New York, New York.

Churchill MA. 1948. Discussion of the Analyses and Use of Reservoir Sedimentation Data by LC Gottschalk. In Proceedings of the Federal Interagency Sedimentation Conference, Denver Colorado. USGS, Washington D.C.

- Cohen S, Kettner AJ, Syvitski, JP, Fekete BM. 2011. WBMsed, a distributed globalscale riverine sediment flux model: Model description and validation. Computers and Geosciences. Volume 53, pages 80-93.
- Cohen S, Kettner AJ, Syvitski, JP. 2014. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity. Global and Planetary Change; Volume 115, pages 44-58.
- Creech C, Selegean J, and Dahl T. 2010. Historic and Modern Sediment Yield from a Forested Watershed and its Impact on Navigation. Conference Proceedings:
 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 July 1, 2010.
- Dendy FE. 1974. Sediment trap efficiency of small reservoirs. Transactions of the ASAE, Volume 17, pages 898-908.
- Environment, Great Lakes, and Energy (EGLE). 2020. Personal communication with Susan Greiner, P.E. Michigan Department of Environment, Great Lakes, and Energy, Water Resources Division, Lansing, Michigan. Date: October 16, 2020.

- Einstein HA. 1950. The Bedload Function for Sediment Transportation in Open Channel Flows. USDA Soil Conservation Service, Washington D.C.Technical Bulletin No 1026.
- Farrand WR and Bell DL. 1982. Quaternary Geology of Michigan. Michigan Department of Natural Resources, Lansing, Michigan. <u>https://www.michigan.gov/documents/deq/1982_Quaternary_Geology_Map_301</u> <u>467_7.pdf</u>
- Flint RF. 1971. <u>Glacial and Quaternary Geology</u>. John Wiley and Sons, Inc., New York, New York.
- Federal Emergency Management Agency (FEMA). 2020. Online Map Service Center: Flood Insurance Studies (FIS) and Flood Insurance Rate Maps (FIRMs). FEMA, Washington D.C. https://msc.fema.gov/portal/.
- Federal Interagency Stream Restoration Work Group (FISRWG). 1998. Stream Corridor Restoration, Principals, Processes, and Practices. Fifteen Federal Agencies. GPO Item Number: 0120-A. ISBN-0-934213-59-3.
- Ferguson R. and Church M. 2004. A Simple Universal Equation for Grain Settling Velocity. Journal of Sedimentary Research, Volume 74, pages 933–937.
- Foster GR, Lane LJ, Nowlin JD, Laflen JM, and Young RA. 1981. Estimating Erosion and Sediment Yield on Field-sized Areas. Transactions, American Society of Agricultural Engineers, Volume 24(5), pages 1253-1262.

Garcia MH. 2008. Sediment Transport and Morphodynamics. IN: Chapter 2,
Sedimentation Engineering, Processes Measurement, Modeling, and Practice,
edited by Marcelo H. Garcia, Ph.D. American Society of Civil Engineers,
Practice No. 110. ASCE, Reston, Virginia.

Garg V and Jothiprakash V. 2008. Estimation of Useful Life of a Reservoir Using Sediment Trap Efficiency. Journal of Spatial Hydrology Vol.8, No.2. Date: Fall 2008.

Gill MA. 1979. Sedimentation and Useful Life of Reservoirs. Journal of Hydrology. Volume 44, pages 89-95.

Gomez B and Church M. 1989. An Assessment of Bed Load Sediment Transport Formulae for Gravel Bed Rivers. Water Resources Research, Volume 25(6).

Google Earth Pro. 2021. Version 7.3.3.7786. Figure references follow.

Figure 1. Hearted River (61). 46.705781, -85.409216, eye elevation 4,776 feet. Accessed June 15, 2021, Image USDA Farm Service Agency, May 8, 2021.

Figure 12. Mio Dam, Michigan. 44.678163, -84.220963, eye altitude 34,449 feet. Accessed May 27, 2021. Image USDA Farm Service Agency, July 25, 2010.

Figure 13. Brown Bridge Dam, Michigan. 44.647144, -85.498959, eye altitude 5,567 feet. Accessed May 27, 2021. Image USDA Farm Service Agency, July 25, 2010.

Figure 14. Webber Dam, Michigan. 42.940964, -84.893928, eye altitude 13,030 feet. Accessed May 27, 2021. Image USDA Farm Service Agency, July 25, 2010.

Figure 15. Ford Lake Dam, Michigan. 42.231659, -83.590882, eye altitude 16,792 feet. Accessed May 27, 2021. Image USDA Farm Service Agency, July 25, 2010.

Figure 16. Riley Dam, Michigan. 42.054023, -83.182336, eye altitude 14,278 feet. Accessed May 27, 2021. Image USDA Farm Service Agency, July 25, 2010.

Figure 17. St. Joseph Harbor and Navigation Channel, St. Joseph River (34).
42.114207, -86.485725, eye altitude 3,925 feet. Accessed June 12, 2021.
Google Earth Pro Imagery, March 25, 2019.

Figure 18. Holland Harbor, Macatawa River (8). 42.772691, -86.208198, eye altitude 3,589 feet. Accessed May 30, 2021. Google Earth Pro Imagery, March 18, 2021.

Figure 25. Portage River (55), Dam and Reservoir MI00673, 47.264463, -88.434508, eye elevation 1,607 feet. Accessed June 12, 2021. Google Earth Imagery June 6, 2017. Figure 25. Au Gres River (1), Dam and Reservoir MI01729, 44.204442, -83.947972, eye elevation 3,782. Accessed June 14, 2021. Google Earth Imagery June 10, 2018.

Figure 25. Clinton River (12), Dam and Reservoir MI00670, 42.630827, -82.970333, eye elevation 5,135 feet. Accessed June 14, 2021. Google Earth, 2021 Maxar Technology Imagery May 5, 2020.

Figure 25. Saginaw River (32), Dam and Reservoir MI3004, 43.059805, -83.306811, eye elevation 737 feet. Accessed June 10, 2021. Google Earth Imagery March 24, 2019.

Figure 28. Cedar River Dam, MI00516, 44.977740, -85.190115, eye altitude 2,166 feet. Accessed June 10, 2021. Google Earth Imagery, May 8, 2016.

Figure 44. Loud Dam, MI00178, 44.4639, -83.7217, eye elevation 15,818 feet. Accessed June 19, 2021. Google Earth Pro, Earth Point Software USGS Topographic Map, Google Earth Imagery, June 22, 2016.

Figure 47. Location of RESSED Reservoirs, 42.250930, -83.342847, eye elevation 96.91 miles. Accessed June 23, 2021. Google Earth Pro, Image Landstat/Copernicus, NOAA Image, Google Earth Imagery.

- Gray JR and Simoes JM. 2008. Estimating Sediment Discharge. IN: Appendix D,
 Sedimentation Engineering, Processes Measurement, Modeling, and Practice,
 edited by Marcelo H. Garcia, Ph.D. American Society of Civil Engineers,
 Practice No. 110. ASCE, Reston, Virginia.
- Great Lakes Commission. 2001. Waste to Resource: Beneficial Use of Great Lakes Dredged Material Waste to Resource: Beneficial Use of Great Lakes Dredged Material. Great Lakes Commission, Ann Arbor, MI.

https://www.csu.edu/cerc/documents/WastetoResource.pdf.

- Great Lakes Environmental Center, Inc. (GLEC). 2011. Photograph of the Vibracore Sampling Equipment Used to Collect Sediment 4-inch Sediment Cores for Radiometric Dating, WSU Sediment Yield and Dam Capacity in the Great Lakes Watershed. GLEC, Traverse City, Michigan. Photograph Date: June 9, 2011.
- Great Lakes Environmental Research Laboratory (GLERL). 2020. Great Lakes Mean Basin Precipitation and Temperature, Lake Superior, Lake Michigan, Lake Huron, Lake St. Clair, and Lake Erie. GLERL, Ann Arbor, Michigan. https://www.glerl.noaa.gov/ahps/mnth-hydro.html
- Heinemann HG. 1981. A New Sediment Trap Efficiency Curve for Small Reservoirs.Water Resources Bulletin, American Water Works Associate. Volume 17,Number 5. Date: October 1981.

- Hicks DM, Hill J, and Shankar U. 1996. Variation of Suspended Sediment Yields
 Around New Zealand: the Relative Importance of Rainfall and Geology.
 International Association of Hydrological Sciences. Publication 236, pages 149-156.
- Hunter TS, Clites AH, Gronewold AD, and Campbell KB. 2015. Development and application of a North American Great Lakes hydrometeorological database -Part I: Precipitation, evaporation, runoff, and air temperature. Journal of Great Lakes Research Volume 41(1), pages 65-77. http://www.glerl.noaa.gov/pubs/fulltext/2015/20150006.pdf
- Interagency Advisory Committee on Water Data (IACWD). 1982. Guidelines for determining flood flow frequency: Bulletin 17B of the Hydrology Subcommittee, Office of Water Data Coordination, U.S. Geological Survey, Reston, Virginia.
- Inman DL and Jenkins SA. 1999. Climate change and the episodicity of sediment flux of small California rivers. Journal of Geology, Volume 107, pages 251–270.
- Jweda J. and Baskaran M. 2011. Interconnected riverine-lacustrine systems as sedimentary repositories: Case study in southeast Michigan using excess ²¹⁰Pb and ¹³⁷Cs-based sediment accumulation and mixing models. Journal of Great Lakes Research Volume 37, pages 432-446.

Kapsimalis V, Pavlakis P, Poulos SE, Alexandri ST, Sioulas A, Filippas D, and Lykousis V. 2005. Internal structure and evolution of the late Quaternary sequence in a shallow embayment: the Amvrakikos Gulf, Northwest Greece.
Marine Geology, Volume 222, pages 399–418.

- Kumar A, Hage-Hassan J, Baskaran M, Miller CJ, Selegean JP, and Creech CT. 2016.
 Multiple sediment cores from reservoirs are needed to reconstruct recent
 watershed changes from stable isotopes (δ13C and δ15N) and C/N ratios: case
 studies from the mid-western United States. Journal of Paleolimnology, Volume
 56, pages 15–31.
- Leopold LB and Emmett WW. 1997. Bedload and River Hydraulics—Inferences from the East Fork River, Wyoming." U.S. Geological Survey, Reston, Virginia. Professional Paper 1583.
- Ludwig W and Probst JL. 1998. River sediment discharge to the ocean: present-day controls and global budgets. American Journal of Science, Volume 298, pages 265–295.
- Mabit L, Meusburger K, Fulajtar E, Alewell C. 2013. The usefulness of ¹³⁷Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011).
 Earth Science Reviews, Volume 127, pages 300-307.

- Mabit L, Benmansour M, Abric JM, Walling DE, Meusburger K, Iurian R, Bernard C, Tarjan ST, Owens PN, Blake WH, Alewell C. 2014. Fallout ²¹⁰Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth Science Reviews, Volume 138, November 2014, Pages 335-351.
- MacArthur RC, Neill CR, Hall BR, Galay VJ, and Shvidchenko AB. 2008. Overview of Sediment Engineering. IN: Chapter 1, Sedimentation Engineering, Processes
 Measurement, Modeling, and Practice, edited by Marcelo H. Garcia, Ph.D.
 American Society of Civil Engineers, Practice No. 110. ASCE, Reston, Virginia.
- McCuen RH. 2004. Hydrologic Analysis and Design, Third Edition. Prentice Hall, Upple Saddle River, New Jersey.
- Mehta AJ and McAnally WH. 2008. Fine-grained Sediment Transport. IN: Chapter 4, Sedimentation Engineering, Processes Measurement, Modeling, and Practice, edited by Marcelo H. Garcia, Ph.D. American Society of Civil Engineers, Practice No. 110. ASCE, Reston, Virginia.
- Meyer-Peter E and Müller R. 1948. Formula for bedload transport. Proceedings of the 2nd Meeting of the International Association for Hydraulic Research, Delft, Netherlands.
- Michigan Department of Natural Resources (MDNR). 1978. Michigan Resource Information System (MIRIS) land use/land cover polygon CAD. MDNR, Lansing, Michigan.

Michigan Department of Environmental Quality. 1988. Michigan's 1988 Non-Point Source Pollution Assessment Report. Michigan Department of Environmental Quality, Surface Water Quality Division, Lansing, Michigan

Michigan Department of Environmental Quality. 1992. NPS BMP Manual, Other BMP Design References, and Pollutants Controlled. MDEQ, Lansing, Michigan.
 Dates: 1992 (original), September 1997, October 1998, and June 2017.
 https://www.michigan.gov/egle/0,9429,7-135-3313 71618 3682 3714-118554-- https://www.michigan.gov/egle/0,9429,7-135-3313 71618

Michigan Department of Environmental Quality. 1998. Guidebook for Best Management Practices for Michigan Watersheds. MDEQ, Lansing, Michigan. Date: October 1998. <u>https://www.a2gov.org/departments/systems-</u> <u>planning/planning-areas/water-resources/Documents/MI-BMP-</u> <u>Guidebook 1998.pdf</u>

Michigan Department of Environmental Quality. 1999. Stormwater Management Guidebook, MDEQ, Land and Water Management Division, Lansing, Michigan. https://www.michigan.gov/documents/deq/wrd-stormwaterguidebook_560012_7.pdf

Michigan Department of Environmental Quality. 2008. Qualitative Biological and Habitat Survey Protocols for Wadeable Streams and Rivers. Surface Water Assessment Section, MDEQ, Lansing, Michigan. Document Number: WB-SWAS-051. Document date: December 2008. Michigan Department of Environmental Quality. 2010. Calculating Runoff Curve Numbers with GIS. MDEQ, Land and Water Management Division, Lansing, Michigan. https://www.michigan.gov/documents/deq/wrd-scs_558239_7.pdf

Michigan Department of Environmental Quality. 2016. Calculating runoff curve numbers with GIS. Michigan Department of Environmental Quality (now EGLE),
Land and Water Management Division, Lansing, Michigan.
https://www.michigan.gov/deq/0,4561,7-135-3313 3684 3724-112833--,00.html

Michigan Department of Environmental Quality. 2017. Michigan Non-Point Source Best Practices Manual. MDEQ, Environmental Assistance Center, Lansing, Michigan.
Date: June 27, 2017. <u>https://www.michigan.gov/egle/0,9429,7-135-</u> 3313 71618 3682 3714-118554--,00.html

Michigan Department of Environment, Great Lakes, and Energy (EGLE). 2018.
Sediment Testing for Dredging Projects, WRD-048. EGLE, Water Resources
Division, Water Policy and Procedures, Lansing, Michigan. Effective Date: April 13, 2018.

Michigan Department of Environment, Great Lakes, and Energy (EGLE). 2019.
 Hydrologic Studies and Dam Safety Unit staff of provided mean annual river
 flows and recurrence interval flows for 60 rivers and contributing watershed areas
 for 45 watersheds. EGLE, Water Resource Division, Lansing, Michigan.

Michigan Department of Environment, Great Lakes, and Energy (EGLE). 2020.
 Michigan Dam Inventory. EGLE, Hydrologic Studies and Dam Safety Unit, Water
 Resources Division, Lansing, Michigan. Date: December 21, 2020.

Michigan Department of Environment, Great Lakes, and Energy (EGLE). 2021.Michigan's Major Watersheds. EGLE, Water Resource Division, Lansing,Michigan. Date accessed. May 31, 2021.

https://www.michigan.gov/documents/deq/wrd-mi-watersheds 559937 7.pdf

Michigan Department of Natural Resources. 1978. Michigan Resource Information System (MIRIS), Landuse/Cover Polygon. MDNR, Lansing, Michigan. <u>http://www.dnr.state.mi.us/spatialdatalibrary/metadata/lu1978_PolygonCAD.htm</u>

Michigan Department of Transportation (MDOT). 2018. MDOT Guidelines forEvaluation of Scour and Scour Analysis Work Sheets. MDOT, Lansing,Michigan. Document date: December 2018.

Milliman JD. 1980. Transfer of river-borne particulate material to the oceans. In Martin J, Burton JD, and Eisma D, eds. River inputs to ocean systems. UNESCO Review and Workshop. Rome, Food and Agriculture Organization of the United Nations, pages 5-12.

Milliman JD and Meade RH. 1983. Worldwide delivery of river sediment to the oceans. Journal of Geology, Volume 91, pages: 1–21

- Milliman JD and Syvitski JPM. 1992. Geomorphic tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, Volume 100, pages: 525–544.
- Milliman JD and Farnsworth KL. 2011. River discharge to the coastal ocean, a global synthesis. Cambridge University Press, Cabridge, United Kingdom.
- Minear JT and Kondolf MG. 2009. Estimating reservoir sedimentation rates at large spatial and temporal scales: A case study of California. Water Resources Resarch, Volume 45, W12502, doi:10.1029/2007WR006703, 2009.
- Montgomery DR. 2012. <u>Dirt, The Erosion of Civilizations</u>. University of California Press, Oakland, California. ISBN #9780520272903.
- Morisawa M. 1968. Streams: their dynamics and morphology. McGraw Hill Book Company, New York.
- Morris GL, Annanadale G, and Hotchkiss. 2008. Reservoir Sedimentation IN Sedimentation Engineering, Processes, Measurements, Modeling, and Practice. American Society of Civil Engineers (ASCE), ASCE Manuals and Reports on Engineering Practice No. 110.
- Mulder T and Syvitski JPM. 1996. Climatic and Morphologic Relationships of Rivers: Implications of Sea Level Fluctuations on River Loads. Journal of Geology, Volume 104, pages 509-523.

 Mulu A and Dwarakish GS. 2015. Different Approach for Using Trap Efficiency for Estimation of Reservoir Sedimentation. An Overview. International Conference On Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015).
 Aquatic Procedia 4, pages: 847 – 852.

National Land Cover Databases (NLCD). 2011. National Land Cover Databases Multi-Resolution Land Characteristics Consortium (MRLC). Updated by the Michigan Department of Environmental Quality, 2005.

http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=5&cat=Land+ Cover+2005

NRCS. 1986. Urban Hydrology for Small Watersheds, Technical Release 55. Natural Resources Conservation Service, U.S. Department of Agriculuture, Washington D. C.

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf

NRCS. 2020. Web Soil Survey. Natural Resources Conservation Service, U.S. Department of Agriculture, Washington D. C. https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

Ouyang D and Bartholic J. 1997. Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. Institute of Water Research, Michigan State University, Lansing, Michigan. Proceedings of the 22nd National Association of Environmental Professionals, May 19-23, 1997, Orlando, FL, pages: 659 – 671. <u>http://www.iwr.msu.edu/rusle/sdr/sdr.htm</u> Parker G. 2008. Transport of Gravel and Sediment Mixtures. IN: Chapter 3,
Sedimentation Engineering, Processes Measurement, Modeling, and Practice,
edited by Marcelo H. Garcia, Ph.D. American Society of Civil Engineers,
Practice No. 110. ASCE, Reston, Virginia.

- Pinet P and Souriau M. 1988. Continental erosion and large-scale relief. Journal Tectonics, Volume 7, pages 563–582.
- Probst JL and Suchet S. 1992. Fluvial suspended sediment transport and mechanical sediment transport in Mahgreb. Hydrological Sciences Journal, Volume 37, Issue 6, pages: 621-637.
- Riedel M, Selegean J, and Dahl T. 2010. Sediment Budget Development for the Great Lakes Region. 2nd Joint Federal Interagency Conference, Las Vegas, Nevada.
 Conference dates: June 27th to July 1st, 2010.
- Ries III KG. 2007. The national streamflow statistics program: A computer program for estimating streamflow statistics for 545ngagged sites: U.S. Geological Survey Techniques and Methods 4-A6. U.S. Geological Survey Reston, Virginia.
- Ritter J. 2015. Soil Erosion Causes and Effects. Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario. Publication Number: 12-053.

- Sanchez-Cabeza JA and Ruiz-Fernandez JC. 2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, Volume 82, pages 183-200.
- Schumm SA and Hadley RF. 1961. Progress in the application of landform analysis in studies of semiarid erosion. USGS, Washington D.C., USGS Circular 437.
- Smith SDP et al. 2015. Rating Impacts in a Multi-Stressor World: a Quantitative Assessment of 50 Stressors Affecting the Great Lakes. Ecological Applications by the Ecological Society of America. Volume 25(3). Pages 717-728.
- Sommerlot AR, Nejadhashemi, AP, Woznicki SA, Giri, S, and Prohaska, MD. 2013. Evaluating the Capabilities of Watershed-scale Models in Estimating Sediment Yield at Field-Scale. Journal of Environmental Management, Volume 127, September 2013, pages 228-336.
- Stantec. 2014. Michigan Lake Plain Regional Reference Curves Project, Revised
 Bankfull Discharge for Selected Michigan Rivers and Regional Hydraulic
 Geometry Curves for Estimating Bankfull Characteristics in Southern Michigan
 Rivers Study. Prepared for the Michigan Department of Environmental Quality
 and the Bay County Drain Commissioner. Stantec, Ann Arbor, Michigan. Report
 Number: 2011-0100.
- State of Michigan. 2020. Geographic Information System Open Data Portal. State of Michigan, Center for Shared Solutions, Lansing, Michigan. <u>https://www.mcgi.state.mi.us/AGOOpenData/contact.html</u>

- Striffler DW. 1963. Suspended Sediment Concentrations in a Michigan Trout Stream as Related to Watershed Characteristics. Federal Interagency Sediment Conference, Symposium on Sedimentation, Jackson, MS. Publication 970, Paper 22.
- Syvitski JPM. 2002. Supply and flux of sediment along hydrological pathways: research for the 21st century. Environmental Computation and Imaging Group, Institute of Arctic and Alpine Research, University of Colorado. Elsevier, Global and Planetary Change. Volume 39, pages 1-11.
- Syvitski JP and Milliman JD. 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediments to the Coastal Ocean. Journal of Geology, The University of Chicago. Volume 115, pages 1-19.
- Syvitski JPM and Kettner AJ. 2008. Scaling sediment flux across landscapes. Sediment dynamics in changing environments, proceedings of a symoposium held by Christchurch, New Zealand, December 2008. IAHS Publication 325, date 2008.
- Syvitski JPM. 2019. Personal communication regarding application of the BQART equation to Michigan watersheds.
- Thomas DM and Beson MA. 1975. Generalization of streamflow characteristics from drainage-basin characteristics: USGS, Lansing, Michigan. Water-Supply paper, pages 1-55.

Thomas WA, Copeland RR, and McComas DN. 2002. SAM –Hydraulic Design Package for Channels. U.S. Army Corps of Engineers Engineer Research and Development Center, Coastal and Hydraulics, Laboratory, Vicksburg MS.

- Trimble SW and Lund SW. 1982. Soil Conservation and the Reduction of Erosion and Sedimentation in the Coon Creek Basin, Wisconsin. U.S. Geological Survey, Alexandria, Virgina. USGS Professional Paper 1234.
- UNESCO. 2013. Soil Erosion and Sediment Production on Watershed Landscapes: Processes and Control. Peter F. Ffolliott, Daniel G. Neary, Kenneth N. Brooks, Roberto Pizarro Tapia, Pablo García Chevesich. The International Hydrological Programme (IHP) of the Regional Office for Science for Latin America and the Caribbean of the United Nations Educational, Scientific and Cultural Organizations (UNESCO).
- U.S. Army Corps of Engineers. 1993. Figure 2-1 from HEC-6, Scour and Deposition in Rivers and Reservoirs, User's Manual. USACE, Hydrologic Engineering Center, Davis, California. Date: August, 1993.
- U.S. Army Corps of Engineers. 1995. Sedimentation Investigations of Rivers and Reservoirs. Department of the Army, Washington DC. Manual No. 1110-2-4000.
 Revision date: October 31, 1995.
- U.S. Army Corps of Engineers. 1999. Saginaw River Basin Sediment Transport
 Modeling. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office,
 Detroit Michigan. Report date: September 15, 1999.

- U.S. Army Corps of Engineers. 2000. Sediment Transport Modeling: Saginaw Bay and Saginaw River Basin. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: October 2000.
- U.S. Army Corps of Engineers. 2001. Sediment Trap Assessment, Saginaw River,
 Michigan. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office,
 Detroit, Michigan. Report Date: December 2001.
- U.S. Army Corps of Engineers. 2005. Clinton River Sediment Transport Modeling Study. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: May 16, 2005.
- U.S. Army Corps of Engineers. 2007a. St. Joseph River Sediment Transport Modeling Study. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: May 16, 2007.
- U.S. Army Corps of Engineers. 2007b. Grand River Sediment Transport Modeling Study. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: May 23, 2007.
- U.S. Army Corps of Engineers. 2007c. Sebewaing River Sediment Transport Modeling Study. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: December 2007.

- U.S. Army Corps of Engineers. 2008. Fluvial Sediment Budget Development for the Great Lakes Region, Great Lakes Tributary Modeling Program (516(e)), Draft Document. USACE, Engineer Research and Development Center, USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: July 2008.
- U.S. Army Corps of Engineers. 2010a. Ontonagon River Watershed 516(e) Sediment Study. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, Michigan. Report Date: August 2010.
- U.S. Army Corps of Engineers. 2010b. Navigable Waters of the United States Within the U.S. Army Corps of Engineers, Detroit District. USACE, Detroit, Michigan.
 Date: January 10, 2010.
- U.S. Army Corps of Engineers. 2012. Sediment Trap Assessment, Saginaw River,
 Michigan. USACE-Detroit District, Great Lakes Hydraulics and Hydrology Office,
 Detroit, Michigan. Report Date: February 13, 2012.
- U.S. Army Corps of Engineers. 2014. Dredging backlog growth under constrained funding, 2013—2018. USACE Sediment Dredging Backlog Slide, Detroit District. May 2014. USACE, Detroit-District, Detroit, Michigan.
 http://www.lre.usace.army.mil/Portals/69/docs/Navigation/FY2015/backlogslides May2014.pdf

- U.S. Army Corps of Engineers. 2015. Dredging and Dredged Material Management, Engineer Manual. U.S. Army Corps of Engineers, Washington D.C. EM1110-2-5025. Date: July 31, 2015.
- U.S. Army Corps of Engineers. 2018. National Inventory of Dams Database. US Army Corps of Engineers, Washington, DC . <u>https://nid.sec.usace.army.mil/</u>
- U.S. Army Corps of Engineers. 2019a. Condition Assessment Sheet VH103, St. Joseph Harbor and Navigation Channel. USACE Detroit District, Operations Office, Technical Services Branch, Detroit, Michigan. Date: April 2019.
- U.S. Army Corps of Engineers. 2019b. Condition Assessment Sheet VH101, Holland Harbor and Navigation Channel. USACE Detroit District, Operations Office, Technical Services Branch, Detroit, Michigan. Date: July 2019.
- U.S. Army Corps of Engineers. 2019c. Personnel communication with Josh Hachey, Chief, Technical Services Branch, Operations Office, USACE-Detroit District. Date: July 18th, 2019.
- U.S. Army Corps of Engineers. 2020a. Great Lakes Harbors Fact Sheets. USACE Detroit District, Operations Office, Technical Services Branch, Detroit, Michigan. <u>https://www.lre.usace.army.mil/Missions/Operations.aspx</u>
- U.S. Army Corps of Engineers. 2020b. Summary of Dredging Backlogs, Michigan Harbors. USACE-Detroit District, Technical Services Branch, Operations Office, USACE-Detroit District. Date: October 6, 2020.

U.S. Army Corps of Engineers. 2021a. FY21 Final Allocation, USACE-Detroit District, January 2021.

https://www.lre.usace.army.mil/Portals/69/docs/Navigation/NavFundingSummarie s/FY21%20GL%20Budget%20Workplan%20Final.pdf?ver=76t_iak12vhS8cB-18 nzw%3d%3d.

- U.S. Army Corps of Engineers. 2021b. Ordinary High-Water Mark and Low Water Datum. USACE-Detroit District, Detroit, Michigan. <u>https://www.lre.usace.army.mil/Missions/Great-Lakes-Information/Links/Ordinary-High-Water-Mark-and-Low-Water-Datum/</u>
- U.S. Army Corps of Engineers. 2021c. Maintenance Dredging Summary, Michigan Harbors, 2018 and 2019. USACE-Detroit District, Technical Services Branch, Operations Office, USACE-Detroit District. Date: January 13, 2021.
- U.S. Army Corps of Engineers. 2021d. Great Lakes Water Level Data, 1918-2021, Long-term Mean, Max, and Min. USACE-Detroit District, Great Lakes Hydraulics and Hydrology, Detroit, Michigan. Date accessed: May 31, 2021. <u>https://www.lre.usace.army.mil/Missions/Great-Lakes-Information/Great-Lakes-Information-2/Water-Level-Data/</u>
- U.S. Climate Data. 2019. https://www.usclimatedata.com/
- U.S. Department of Agriculture. 1972. Natural Resources Conservation Service, NRCS
 National Engineering Handbook, Chapter 14, Stage-Discharge Relationships.
 USDA, Washington, D.C.

- U.S. Department of Agriculture. 1983. National Engineering Handbook, Second
 Edition. Section 3, Sedimentation. Chapter 8, Sediment storage design criteria.
 USDA, Soil Conservation Service, Washington DC.
- U.S. Department of Agriculture. 2007. National Engineering Handbook, Part 654, Stream Restoration Design. STREAMTools Sediment Transport Module 4.0. USDA, Natural Resources Conservation Services, Washington D.C. <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/restorati</u> <u>on/?cid=stelprdb1043243</u>
- U.S. Department of Agriculture. 2011. National Land Cover Database. USDA, Washington D.C. https://data.nal.usda.gov/dataset/national-land-cover-database-2011-nlcd-2011.
- U.S. Department of Agriculture. 2019. USDA Geospatial Data Gateway. https://datagateway.nrcs.usda.gov/
- U.S. Department of Agriculture. 2019. Conservation Reserve Program Fact Sheet. USDA, Farm Service Agency, Washington D.C. Date: December 2019. <u>https://www.fsa.usda.gov/Assets/USDA-FSA-</u> Public/usdafiles/FactSheets/2019/conservation-reserve program-fact sheet.pdf
- U.S. Department of Agriculture. 2021. Conservation Reserve Program, Acres Under Contract Each Fiscal Year, 1986-2019. USDA, Farm Service Agency, Washington D.C. <u>https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index</u>

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. 2007.
 Identifying, Planning, and Financing Beneficial Use Projects Using Dredged
 Material Beneficial Use Planning Manual. U.S. Environmental Protection Agency
 and U.S. Army Corps of Engineers, Washington D.C. Document Number:
 EPA842-B-07-001. Date: October 2007.

https://www.epa.gov/sites/production/files/2015-

08/documents/identifying planning and financing beneficial use projects.pdf

- U.S. Environmental Protection Agency. 2021. Watershed Assessment, Tracking & Environmental Results System (WATERS) GeoViewer. USEPA, Washington D.C. https://www.epa.gov/waterdata/waters-geoviewer
- U.S. Geological Survey. 1984a. National Water Summary Hydrologic Events and Issues, USGS, Washington DC. Water Supply Paper: 2250.
- U.S. Geological Survey. 1984b. Statistical Models for Estimating Flow Characteristics of Michigan Streams. USGS, Lansing, Michigan. Water-Resources Investigations Report 84-4207. http://pubs.usgs.gov/wri/1984/4207/report.pdf.
- U.S. Geological Survey. 1984c. Sediment characteristics of Tennessee Streams and Reservoirs. USGS, Nashville, Tennessee. Open File Report 84-749.
- U.S. Geological Survey. 1994. Nationwide Summary of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency of Floods for Ungaged Sites. U.S. Geological Survey, Reston, VA. Water-Resources Investigations Report 94-4002.

- U.S. Geological Survey. 1998. Indirect Groundwater Discharge to the Great Lakes.U.S. Geological Survey, U.S. Department of Interior, Denver, Colorado. Open-File Report 98-579.
- U.S. Geological Survey. 2005. Base Flow in the Great Lakes Basin. U.S. Geological Survey, U.S. Department of Interior, Denver, Colorado. Scientific Investigations Report 2005-5217.
- U.S. Geological Survey. 2009. Estimated Bankfull Discharge for Selected Michigan Rivers and Regional Hydraulic Geometry Curves for Estimating Bankfull Characteristics in Southern Michigan Rivers. U.S. Department of the Interior, USGS, Washington DC. Scientific Investigations Report 2009–5133.
- U.S. Geological Survey. 2011. Sediment Load from Major Rivers into Puget Sound and its Adjacent Waters. U.S. Department of the Interior, USGS, Washington DC. <u>https://pubs.usgs.gov/fs/2011/3083/pdf/fs20113083.pdf</u>
- U.S. Geological Survey. 2014. Reservoir Sedimentation (RESSED) Database, U.S. Department of the Interior, USGS, Washington DC. https://water.usgs.gov/osw/ressed/
- U.S. Geological Survey. 2016. Diagram of Channel Cross-Section IN: How Stream Flow is Measured. USGS, Water Science School, Washington D.C. Figure Credit: Credit: S.A. Olson and J.M. Norris, USGS. <u>https://www.usgs.gov/special-topic/water-science-school/science/how-streamflow-measured?qt-science_center_objects=0#qt-science_center_objects</u>

- U.S. Geological Survey. 2019a. National Map Viewer. USGS, National Geospatial Program (NGP), U.S. Department of the Interior, Washington D.C. <u>https://www.usgs.gov/core-science-systems/ngp/tnm-delivery</u>
- U.S. Geological Survey. 2019b. Guidelines for Determining Flood Flow Frequency Bulletin 17C, Chapter 5 of Section B Surface Water, Book 4, Hydrologic Analysis and Interpretation, Techniques and Methods 4-B5, Version 1.1. U.S. Department of the Interior, Washington D.C Date: May 2019. <u>tm4b5.pdf - Guidelines for</u> <u>Determining Flood Flow Frequency—Bulletin 17C (usgs.gov)</u>
- U.S. Geological Survey. 2020. National Hydrography Dataset (NHD). USGS, National Geospatial Program (NGP), U.S. Department of the Interior, Washington D.C. <u>https://www.usgs.gov/core-science-systems/ngp/national-hydrography</u>
- U.S. Geological Survey. 2021. Regionalization of Surface-Water Statistics Using Multiple Linear Regression, Chapter 12 of Section A, Statistical Analysis, of Book 4, Hydrologic Analysis and Interpretation. USGS, U.S. Department of the Interior, Washington D.C. Techniques and Methods 4A12 Version 1.1, February 2021. <u>https://doi.org/10.3133/tm4A12</u>
- Verstraeten G and Poesen J. 2000. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield.Progress in Physical Geograph. Volume 24, Pages 219-251.

- Vorosmarty C, Meybeck M, Fekete B, Sharma K, Green P, and Syvitski JPM. 2003. Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Global and Planetary Change. Volume 39, pages 169-190.
- Wayne State University. 2017. Sediment Yield and Dam Capacity in the Great Lakes Watershed. Report prepared in behalf of the USACE-Detroit District. Wayne State University, Detroit, Michigan. Report date: May 2017.
- Wilson L. 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science, Volume 273, pages 335–349.
- Yalin MS. 1963. An expression for bed-load transportation. Journal of Hydraulics Division, Volume 89 (3): 221–250.
- Yang CT. 2006. Reclamation, Managing Water in the West, Erosion andSedimentation Manual. U.S. Department of the Interior, Bureau of Reclamation.U.S. Government Printing Office, ISBN-10, 0-16-077628-7.

ABSTRACT

ESTIMATING BEDLOAD SEDIMENT DELIVERY TO THE GREAT LAKES FROM SIXTY MICHIGAN RIVERS

by

JOHN H. BARKACH

August 2021

Advisor: Dr. Carol Miller

Major: Civil and Environmental Engineering

Degree: Doctor of Philosophy

This research involved development of an empirical equation using regression analysis to predict bedload sediment delivery to the river outlet of 60 Michigan rivers and five sub-watersheds. Watershed sediment delivery is the total amount of sediment generated within a watershed and delivered to the river outlet over a particular timeframe. Estimation of watershed sediment delivery involves an understanding of the complex processes of soil erosion, sediment transport, and sediment deposition. The total sediment load transported by a river to the river outlet consists of dissolved load, wash load (silts and clays), and bed material load. Bed material load consists of suspended load and bed load. Suspended load is the portion of the bed material load that is lifted by turbulence to travel within the water column above the river bed at elevations greater than a few sediment grain diameters. Prediction of bed load sediment delivery at the river outlet was the focus of this research and is the portion of the bed material load that travels within a few grain diameters of the river bed and moves by rolling, sliding, and saltating along the bed of the river. With respect to the regression analysis, the dependent variable was the measured watershed sediment delivery estimates based on (1) analysis of U.S. Army Corps of Engineers dredging data at federally maintained Harbors and navigation channels at the outlets of 12 Michigan rivers, and (2) watershed sediment delivery estimates based on the results of ¹³⁷Cs and ²¹⁰Pb radiometric dating of sediment cores collected from five Michigan reservoirs. Eighteen characteristics of the fluvial system and watershed were evaluated using step-wise regression analysis. Based on log normal transformation of the dependent and independent variables, a regression equation was developed to predict bedload sediment delivery to the river outlet using three predictor variables: the 1.5-year recurrence interval flow of the river, the percent of the watershed covered in upland and aquatic wetlands, and the percent of the watershed covered in manmade reservoirs.

AUTOBIOGRAPHICAL STATEMENT

At an early age, I developed a strong interest in earth processes and fluvial systems, especially the movement and interaction of soil, groundwater, surface water and sediment. I received my Bachelors of Science in Geology from Michigan State University during 1983 and a Master of Science in Hazardous Waste Management from the Department of Engineering at Wayne State University during 1991.

Since 1984, I have worked as a consultant for a variety of industrial, municipal and government clients and have extensive experience in site investigation and remediation at federal RCRA Corrective Action sites, Superfund sites, at a wide range of industrial, commercial, and military sites encompassing the following industries:

Military Munitions Manufacturing	Metal Plating Operations
Automotive Parts Manufacturing	Foundry Operations
Petroleum Refining and Storage	Coal Fired Power Plants
RCRA Hazardous Waste Landfills	Municipal Landfills

The research associated with my Doctorate in Civil Engineering at Wayne State University involved extensive study with respect to sediment transport and sediment delivery in rivers, impoundments, and coastal areas. My graduate work included coursework and research in open channel hydraulics, hydrologic analysis and design, surface water quality modelling, river assessment and restoration, and sediment transport.